Poster Session A
Sunday, September 21, 2014
2:30 p.m. – 5:00 p.m.
Freedom and Independence Ballrooms

Tumor Microenvironment

A01 Plasticity potential of the putative multiple myeloma cancer stem cell. Stacy W. Blain, SUNY Downstate Medical Center, Brooklyn, NY, United States.

A02 Altered myeloid cells in the tumor microenvironment promote growth of T cell acute lymphoblastic leukemia. Lauren IR Ehrlich, The University of Texas at Austin, Austin, TX, United States.

A03 Novel functions of matrix metalloproteinase-9 contributing to B-cell chronic lymphocytic leukemia progression. Angeles García-Pardo, Centro de Investigaciones Biologicas, CSIC, Madrid, Spain.

A04 The tumor microenvironment is the main source of IL-6 for plasmacytoma development in mice. Siegfried Janz, University of Iowa, Iowa City, United States.

A05 A rare subpopulation of quiescent, drug resistant stem cells exists in patients’ ALL cells growing in mice determined by the bone marrow niche. Irmela Jeremias, Helmholtz Center Munich, Munich, Germany.

A06 The chemokine receptor CXCR4 is essential for the maintenance of T cell acute lymphoblastic leukemia. Lauren A. Pitt, New York University School of Medicine, New York, NY, United States.

A07 Loss of Rpl22 promotes tumor progression through regulation of angiogenesis and dissemination. Shuyun Rao, Fox Chase Cancer Center, Philadelphia, PA, United States.

A08 A novel role for the high mobility group A1 (HMGA1) chromatin remodeling protein in mediating AML-niche crosstalk. Linda M.S. Resar, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.

A09 CD138-negative myeloma cells regulate mechanical properties of bone marrow stromal cells through SDF-1/CXCR4/AKT signaling pathway. Dan Wu, Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC, United States.

Immunotherapy

A10 Activation of the STING pathway enhances immunity and improves survival in a murine myeloid leukemia model. Emily K. Curran, University of Chicago, Chicago, IL, United States.

A11 GIFT4-reprogrammed leukemic B cells for CLL immunotherapy. Jiusheng Deng, Winship Cancer Institute Emory University, Atlanta, GA, United States.

A12 Combination of the anti-CD38 monoclonal antibody daratumumab and all-trans retinoic acid. Inger S. Nijhof, UMC Utrecht, Utrecht, Netherlands.

A13 Anti-CD38-Attenukine™: a myeloma-targeting immunocytokine containing an engineered IFNα that provides >10,000-fold enhanced tumor-specific activity compared to native IFNα. Sarah Pogue, Teva Pharmaceuticals, Redwood City, CA, United States.
A14 Cellular immunotherapy for refractory hematological malignancies; Haploidentical donor lymphocyte infusions generate an allogeneic effect that targets leukemia. John L. Reagan, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, United States.

A15 In vivo efficacy of a CD38-specific engineered toxin body. Erin K. Willert, Molecular Templates, Georgetown, TX.

Drug Discovery

A16 The tyrosine phosphatase PRL3 as a novel drug target in T-cell acute lymphoblastic leukemia. Jessica Blackburn, Massachusetts General Hospital, Boston, MA, United States.

A17 Non-RGD-based strategies to target the thyroid hormone receptor-integrin αvβ3: Lessons from myeloma cells. Paul J. Davis, Albany Medical College, Albany, NY, United States.

A18 MicroRNA-29b replacement inhibits proteasomes and disrupts the aggresome-autophagy pathway to enhance the antmyeloma benefit of bortezomib. James Driscoll, University of Cincinnati College of Medicine, Cincinnati, OH, United States.

A19 MALT1 inhibition as an anchor for combinatorial therapy of ABC-DLBCL. Lorena Fontan, Weill Cornell Medical College, New York, United States.

A20 Inhibition of RNA Polymerase I transcription by CX-5461 as a completely new approach to treat highly refractory haematological malignancies. Ross D. Hannan, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia.

A21 Inhibition of USP7 for the treatment of multiple myeloma and other malignancies. Suresh Kumar, Progenra, Inc, Malvern, PA, United States.

A22 Sphingosine kinase-1 as a potential therapeutic target in natural killer-large granular lymphocyte leukemia. Francis R. LeBlanc, Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States.

A23 Type II JAK2 inhibitor NVP-CHZ868 has potent activity in JAK2-dependent B-cell acute lymphoblastic leukemias (B-ALLs) in vivo. Loretta S. Li, Dana-Farber Cancer Institute, Boston, MA, United States.

A24 The dual PI3K δ/γ inhibitor, RP6530, in combination with Ibrutinib or fludarabine, synergistically enhances cytotoxicity in primary CLL cells in vitro. Swaroop Vakkalanka, Rhizen Pharmaceuticals SA, Fritz-Courvoisier 40, La Chaux-De-Fonds, Switzerland.

A25 Dual inhibition of Flt3 and Fes tyrosine kinases potently blocks proliferation of AML cells expressing an active Flt3 mutant. Mark Weir, Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.

Other: Leukemia

A26 Cancer-associated mutations impair the functional association of ETO/MTG family members with E proteins. Pankaj Acharya, Vanderbilt University, Nashville, TN, United States.
Risk of hematopoietic cancer associated mortality among workers in the poultry slaughtering and processing industries. Saritha Bangara, UNTHSC, Fort Worth, Texas, United States.

Use of a high-throughput screen of primary leukemia cells to personalize therapy for relapsed/refractory AML: Proof of concept and clinical implementation of precision medicine. Mark G. Frattini, Columbia University Medical Center, New York, NY, United States.

Characterization of new cryptic rearrangements of the erythropoietin receptor in Ph-like acute lymphoblastic leukemia. Ilaria Iacobucci, Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, United States.

A large-scale transgenic screen in zebrafish identifies TOX as a novel oncogene in T-cell acute lymphoblastic leukemia. David Langenau, Massachusetts General Hospital, Charlestown, MA, United States.

Role for the tumor suppressor phf6 in hematopoiesis. Finola E. Moore, Massachusetts General Hospital, Charlestown, MA, United States.

Therapeutic potential of the novel mTOR inhibitor Torin-2 to overcome AKT reactivation in B-precursor acute lymphoblastic leukemia (B-pre ALL). Luca M. Neri, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.

Decreased levels of the transcription factors Ik-1 and MZF1 contribute to upregulation of IGF-IR expression in NPM-ALK+ T-cell anaplastic large-cell lymphoma. Hesham M. Amin, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

The BRAF pseudogene is a proto-oncogenic competitive endogenous RNA. Florian A. Karreth, Weill Cornell Medical College, New York, NY, United States.

Remodeling of the malignant bone marrow niche represents a therapeutic target. Timothy B. Campbell, University of California, San Francisco, CA, United States.

Initial characterization of genetically engineered mice carrying a conditional allele of a splicing factor gene (U2AF1) commonly mutated in myeloid disorders. Dennis Liang Fei, National Institutes of Health, Bethesda, MD, United States.

A41 Life-threatening pericardial effusion following resolution of transient myeloproliferative disorder (TMD). Nitya A. Narayan, Rush University Medical Center, Chicago, IL, United States.

Other: Myeloma

A42 Quantification of MYC expression and mTORC signaling as biomarkers of BET inhibition in multiple myeloma. Anna Kalota, University of Pennsylvania, Philadelphia, PA, United States.

A43 Opposing Roles of The 19S regulatory- and 20S core-proteasomal subunits in controlling sensitivity of multiple myeloma cells to proteasome inhibition. Martin Kampmann, Howard Hughes Medical Institute and University of California San Francisco, San Francisco, CA, United States.

A45 Osteoblastic niche supports the growth of quiescent multiple myeloma cells. Nami McCarty, University of Texas-Health Science Center at Houston, Houston, Texas, United States.

Other

A46 Real time niche tracking of cancer stem cell cycle kinetics using a novel bi-cistronic lentiviral reporter. Gabriel Pineda, UCSD Moores Cancer Center, La Jolla, CA, United States.