A01 Exploring phosphatase and tensin homolog (PTEN) loss as a potential predictive marker for response to everolimus in patients with pancreatic neuroendocrine tumors (PNETs). Moh'd Khushman, The University of Miami/Sylvester Cancer Center, Miami, FL, United States.

A02 Biomarkers of drug response to buparlisib: Results of next-generation sequencing in a Phase II trial of advanced endometrial carcinoma. Markus Riester, Novartis Institutes for BioMedical Research, Inc., Cambridge, MA, United States.

A03 Comprehensive predictive biomarker evaluation in two Phase II clinical trials of the PI3K/mTOR inhibitor GDC-0980 in metastatic renal cell carcinoma and advanced endometrial cancer. Jill Spoerke, Genentech Inc., South San Francisco, CA, United States.

A04 Characterisation of VPS34-IN1, a specific inhibitor of Vps34 reveals that the phosphatidylinositol 3-phosphate binding SGK3 protein kinase is regulated by Class III PI-3 kinase. Ruzica Bago, University of Dundee, MRC-Protein Phosphorylation and Ubiquitylation Unit, Dundee, United Kingdom.

A05 Coordinated control of protein synthesis by mTORC1 and RSKs in triple-negative breast cancer (TNBC). Rafael Cuesta, Stern College for Women of Yeshiva University, New York, NY, United States.

A06 Cholesteryl Ester Accumulation Induced by PTEN Loss and PI3K/AKT Activation Underlies Human Prostate Cancer Aggressiveness. Hyeon Jeong Lee, Purdue University, West Lafayette, IN, United States.

A07 Decline in the growth of murine T-cell lymphoma via modulation of PI3K signaling pathway: key role of quercetin and PI-103. Akhilendra Maurya, Banaras Hindu University, Varanasi, Uttar Pradesh, India.

A08 Analysis of S6K1 inhibitors for cytotoxic effects in PTEN-deficient cells. David Plas, University of Cincinnati, Cincinnati, OH, United States.

A09 Cooperation of the MAPK and PI3K>AKT>mTORC1 signaling pathways is required for PIK3CA mutant melanoma maintenance. Jillian Silva, University of California, San Francisco, San Francisco, CA, United States.

A10 HBV pre-S2 mutant induces SLC2A1-mediated aerobic glycolysis through MTOR signal cascade to promote tumorigenesis: Implication for HCC chemoprevention. Chiao-Fang Teng, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan.
A11 Cross talk between mTORC1 and estrogen receptor in breast cancer. Anya Alayev, Yeshiva University, New York, NY, United States.

A12 Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC. Katherine Amato, Vanderbilt University, Nashville, TN, United States.

A13 A positive feedback loop for transcriptional regulation of beta-catenin that favors sustained colorectal cancer cell invasion. Obul Bandapalli, University of Heidelberg, Heidelberg, Germany.

A14 LKB1 loss is associated with Akt1 phosphorylation in head and neck cancer. Nejat Dalay, I.U Oncology Institute, Istanbul, Turkey.

A15 Dual inhibition of the PI3K-mTOR signaling in combination with HER2 inhibitor is necessary for maximal antitumor activity in HER2+ breast cancer cells. Pradip De, Avera Research Institute, Sioux Falls, SD, United States.

A16 DDR-mediated antitumor actions of PARP inhibitor: Can PI3K-mTOR pathway inhibitor be combined with PARP inhibitor in TNBT? Nandini Dey, Avera Research Institute, Sioux Falls, SD, United States.

A17 Everolimus enhances immunotoxin action. David Fitzgerald, National Cancer Institute, Bethesda, MD, United States.

A18 Geranylgeranoic acid (GGA) induced autophagic cell death through induction of unfolded protein response (UPR) and suppression of mTOR signaling pathway. Chieko Iwao, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan.

A19 IGFBP3 targets mTOR to suppress translation in hypoxia. Woo-Young Kim, RCCFC, Sookmyung Women's University, Seoul, Korea, Republic Of.

A20 Insulin receptor signaling in mammary epithelial cells. Yekaterina Poloz, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.

A21 Inhibitory Role of Phosphatidylinositol-3,4-bisphosphate in Triple-Negative Breast Cancers. Darien Reed, University of California San Francisco, San Francisco, CA, United States.

A22 Identification of a novel protein that blocks the Rag-Ragulator interaction and inhibits mTORC1. Lawrence Schweitzer, Whitehead Institute for Biomedical Research, Cambridge, MA, United States.

A23 Differentiation of PI3K/Akt/mTOR inhibition in cancer models using dual dissociative TORC1/TORC2 (P529), single dissociative TORC1 (rapalogs) and catalytic inhibitors (PI3K/Akt, PI3K/mTOR). David Sherris, RestorGenex Pharmaceuticals, Inc., Jamaica Plain, MA, United States.

A24 Comprehensive PI3K pathway inhibition through combination of the PI3Kβ/δ inhibitor AZD8186 and the mTORC1/2 inhibitor AZD2014 drives tumor regression in vivo. Simon Barry, AstraZeneca, Macclesfield, Cheshire, United Kingdom.

A25 Effect of Rab25 on Akt1 phosphorylation. Nur Buyru, IU Cerrahpasa Medical Faculty, Istanbul, Turkey.

A27 Dual PI3K/BRD4 (kinase/epigenetic) inhibitors for maximal MYC control in cancer therapeutics. Donald Durden, University of California San Diego, La Jolla, CA, United States.


A29 Deconstructing the PI3K/mTORC1 signaling pathway in NF1 mutant cancer to identify new therapies. Clare Malone, Brigham and Women's Hospital, Boston, MA, United States.

A30 A genome-wide siRNA screen in mammalian cells for regulators of S6 phosphorylation. Angela Papageorgiou, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.

A31 Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Supriya Shah, Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, United States.

A32 Cell dormancy and tumorigenicity due to PTEN loss. Michele Vitolo, University of Maryland Baltimore, Baltimore, MD, United States.

A33 Utilizing insulin the treatment of prostate cancer with BKM120 abrogates the therapeutic effect of PI3K pathway inhibition. Lily Wang, Weill Cornell Medical Center, New York, NY, United States.

A34 GDC-0980, a dual PI3K/mTOR inhibitor, selectively inhibits NF2 mutant malignant mesothelioma (MM) cells and inhibits TOR signaling without activating Akt or ERK. Marjorie Zauderer, Memorial Sloan Kettering Cancer Center, New York, NY, United States.

A35 Proteomic and transcriptional profiling reveal differential responses to combined MEK and PI3K-mTOR network inhibition in basal-like and mesenchymal subtypes of triple-negative breast cancer. Sarah Schweber, Albert Einstein College of Medicine, Bronx, New York, United States.

A36 Combined inhibition of PI3K isoforms and mTOR kinase is critical for cancer stem cell inhibition by VS-5584. Qunli Xu, Verastem Inc., Cambridge, MA, United States.

A37 PI3-kinase signaling is rate limiting for KRASG12D-driven lung tumorigenesis but is not required for tumor maintenance. Shon Green, UCSF, San Francisco, CA, United States.

A38 Investigating potential cooperation between Pik3ca mutation and Her2 amplification in mammary tumorigenesis. Lauren Hare, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.

A39 PI3K Inhibition in Preclinical Models of HNSCC. Matthew Hedberg, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.

A40 Blockade mTOR and PDGF pathways inhibited liver metastasis by modulating organ microenvironment in colorectal cancer. Yasuhiko Kitadai, Hiroshima University, Hiroshima, Hiroshima, Japan.

A41 Automated immunohistochemistry of phosphobiomarkers: Case study of MTOR (MLN0128) and PI3Kα (MLN1117) investigational inhibitors, single agent and in combination, on xenografts and mouse skin. Anna Kreshock, Takeda Pharmaceuticals International Co, Cambridge, MA, United States.

A42 Increased Akt3 expression as a resistance mechanism to targeted therapy. Y Rebecca Chin, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
A43 Basal expression of insulin-like growth factor 1 receptor determines intrinsic resistance of cancer cells to a PI3K inhibitor ZSTK474. Shingo Dan, Zenyaku Kogyo, Co. Ltd, Tokyo, Japan.

A44 MTOR mutations in cancer. Brian Grabiner, Whitehead Institute, Cambridge, United States.

A45 In-depth molecular characterisation of novel PI3K-mTOR inhibitor-resistant NSCLC cell lines. Susan Heavey, Institute of Molecular Medicine, St. James Hospital, Dublin 8, Ireland.

A46 Inhibition of PIK3CA with BYL719 can overcome resistance to cetuximab in squamous cell carcinoma of the head and neck (SCCHN). Pamela Munster, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, United States.

A47 DNA-PKcs is amplified in high-grade serous ovarian cancer (HGSC), correlates with poor outcome and drives resistance to platinum therapy via the AKT signaling pathway. Euan Stronach, Imperial College London, London, United Kingdom.

A48 Crosstalk between ERK2 and Akt1 in tumor cells with constitutive K-RAS activity leads to the limited response to PI3K inhibition. Mahmoud Toulany, Division of Radiobiology, Department of Radiooncology, University of Tuebingen, Tuebingen, Germany.

A49 Inhibition of mTOR induces chemo-resistance in B-cell acute lymphoblastic leukemia. Thanh-Trang Vo, University of California, Irvine, Irvine, California, United States.

A50 Inhibition of Akt is sufficient to upregulate Progesterone Receptor B dependent transcription and decrease angiogenesis in endometrial cancer cells. Irene Lee, Northwestern University, Chicago, IL, United States.

A51 Combination of mTOR inhibition and anti PD-L1 in syngeneic models of cancer. Luciano Pacelli, Medimmune, Cambridge, United Kingdom.

A52 Extracellular matrix regulation of ErbB3 in a subset of wild-type BRAF/NRAS melanoma. Sheera Rosenbaum, Thomas Jefferson University, Philadelphia, PA, United States.

A53 Dual Inhibition of mTOR in Hepatocellular Carcinoma: Autophagy Friend or Foe? Sonia Veiga, IDIBELL, Barcelona, Spain.

A54 Improved evaluation of specific PI3K inhibitors though advanced preclinical melanoma models. Adina Vultur, The Wistar Institute, Philadelphia, PA, United States.

A56 A dual PI3K-mTOR inhibitor induced cardiac hypertrophy in mice: Role of the insulin signaling. Xinhua Yan, GeneSys Research Institute and Tufts University School of Medicine, Boston, MA, United States.