A leader in the field of cellular and molecular biology, Dr. Vande Woude has led research on cloning integrated copies of acute transforming retroviruses and comparing their resulting oncogene copy numbers with copies of normal genes (protooncogenes). He isolated and identified sequences called long-terminal repeats (LTRs) found in DNA after retroviral infection and showed that enhancers within LTRs promote gene expression. He later discovered the human MET oncogene and protooncogene and characterized the protein as a receptor tyrosine kinase, work that led to identifying MET’s signal, hepatocyte growth factor (HGF), and the observation that aberrant expression of HGF and MET can stimulate carcinogenesis. Dr. Vande Woude conducted research at the National Cancer Institute for many years and was the founding director of the Van Andel Research Institute.

Figure 5. Expression of p53-175Hfs in transformed REF. Primary rat embryo fibroblasts (REF) or the transformed cell lines p53-175Hfs-21a2 or p53-175Hfs-21a3 (transfected with p53-175Hfs plus E1A plus ras) were metabolically labeled with [35S] methionine, and equal amounts of labeled protein (2.7 x 10^6 cpm) were immunoprecipitated with PAb419 (419), PAb421 (421), Ab2, or anti-hsp70 antisera (hsp) and electrophoretically separated. The migrations of molecular mass markers, hsc70, rat p53 (rp53), and human p53 (hp53) are indicated. The autoradiogram is a 7-day exposure.
Uncovering TOPO2 Isoform Expression Patterns and Functional Differences

LPA Alters Neuronal Appearance

Duke Researcher Named Editor

Cell Growth & Differentiation Evolves into a New Journal: Molecular Cancer Research