A01 Application of patient-derived models from under-studied patient populations to discover therapeutically targetable pathways in triple negative breast cancer systems. Margarite Matossian, Tulane University School of Medicine, New Orleans, LA, United States.

A02 Black race and distant recurrence after neoadjuvant compared to adjuvant systemic chemotherapy in an ethnically and racially diverse population. Maja Oktay, Montefiore Medical Center, Bronx, NY, United States.

A03 Circulating CCL2 and CXCL8 chemokine levels and receptor interactions differ in African-Americans and Caucasians with breast cancer. Brittany Jenkins, University of Georgia, Athens, GA, United States.

A04 Dasatinib shows different cytotoxicity in triple negative breast cancer cell lines. Yuya Haga, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.

A05 Deep immunofluorescence imaging of solvent-cleared mouse mammary glands. Anna Polec, Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo Un, Oslo, Norway.

A06 Discrepancy of pathologic complete response and outcome between breast tumor and axillary node in HER2 positive breast cancer after neoadjuvant chemotherapy. Chia-Hui Chu, Division of General Surgery, Chang Gung Memorial Hospital, Taipei, Taiwan.

A07 DNA methylation predicts response of triple-negative breast cancer to all-trans retinoic acid treatment. Krysta Coyle, Dalhousie University, Halifax, NS, Canada.

A08 Epigenetic heterogeneity in triple-negative breast cancer. Reo Maruyama, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.

A10 Impact of exercise on body fat distribution in overweight and obese breast cancer survivors. Frank Sweeney, University of Southern California - Los Angeles, Los Angeles, CA, United States.

A11 Association of the main variants of the 8q24-rs13281615 and 2q35-rs13387042 with breast cancer risk in Khorasan population. Mahta Salehi, Mashhad University of Medical Sciences, Mashhad, Khorasan Razavi, Iran, Islamic Republic Of.

A14 Comprehensive analysis of the DNA damage repair and maintenance pathways that regulate TNBC sensitivity to replication stress. Abena Redwood, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
Poster Session A
Sunday, October 8, 2017
1:15 p.m.–3:45 p.m.
Salons 3, 4, 5, and 6 of the Ray Dolby Ballroom

A15 DNA damage response-targeted molecules for the breast cancer therapy. Scott Grindrod, Shuttle Pharmaceuticals, Germantown, MD, United States.

A16 Evaluation of the genotoxicity of ruthenium complex, trans-[Ru(ThySMe)(PPh₃)₂(bipy)]PF₆, by comet assay *in vitro* on breast cells and *in vivo*. Amanda Becceneri, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil.

A17 *Ganoderma lucidum* inhibits the DNA damage response in combination with carboplatin in breast cancer cells. Ivette Suárez-Arroyo, Universidad Central del Caribe School of Medicine, Bayamon, PR, United States.

A18 Predictive and prognostic significance of RECQ1 expression in breast cancer. Sudha Sharma, Howard University, Washington, DC, United States.

A20 Analysis of tumor infiltrating lymphocytes and expression of PD1 and PD-L1 in breast tumors prior to and after neo-adjuvant chemotherapy. Robert Wesolowski, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.

A21 Characterization of the immune environment in the in situ to invasive breast carcinoma transition. Carlos Gil Del Alcazar, Dana-Farber Cancer Institute, Boston, MA, United States.

A24 SAS1B protein: Determining whether ASTL or SAS1B has a role in tumor progression. Zunair Shakeel Khokhar, University of Virginia, Charlottesville, VA, United States.

A25 TEM8 specific CAR T cells induce regression of patient-derived xenograft and metastatic models of triple-negative breast cancer. Tiara Byrd, Baylor College of Medicine, Houston, TX, United States.

A26 The metastatic potential of breast cancer cells was suppressed by NLRP3 inflammasome inhibition in macrophages. Joo Lee, The Catholic University of Korea, Bucheon, Korea, Republic Of.

A27 TIM-3 suppresses CD103+ dendritic cell function and response to chemotherapy in breast cancer. Brian Ruffell, H Lee Moffitt Cancer Center, Tampa, FL, United States.

A28 Identifying putative predisposition genes in hereditary and early onset breast cancer using whole exome sequencing. Dirce Carraro, A. C. Camargo Cancer Center, São Paulo, São Paulo, Brazil.

A29 Investigation of *RECQL* variants in European and African American breast cancer cohorts. Madison Chandler, Auburn University, Auburn, AL, United States.
A30 PELP1 and AIB1 cooperate to promote breast cancer progression in ER+ breast cancer models. Thu Truong, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.

A33 Using deep learning to quantify TILs and correlate patterns of epithelium and stroma in breast cancer H&E images with ER/PR/Her2 status. Rishi Rawat, University of Southern California, Los Angeles, CA, United States.

A34 Bcl11b maintains the long term mammary stem cell and is crucial for the drug resistance in breast cancer. Shang Cai, Stanford University, Palo Alto, CA, United States.

A35 Characterizing the role of the nuclear coactivator AIB1 in triple negative breast cancer. Francisco Saenz, Georgetown University, Washington, DC, United States.

A36 Chemosensitivity to trastuzumab emtansine (T-DM1) differs in naturally or transduced HER2-overexpressing human breast cancer cells. Jeffrey Wu, OHSU, Portland, OR, United States.

A37 Combined targeting of estrogen receptor alpha and nuclear transport pathways remodel metabolic pathways to induce apoptosis and overcome tamoxifen resistance. Eylem Kulkoyluoglu Cotul, University of Illinois at Urbana-Champaign, Urbana, IL, United States.

A38 Comprehensive kinome activity mapping of triple negative breast cancer. Nina Koemans, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, United States.

A39 Estrogen-driven non-canonical WNT4 signaling is essential for proliferation and survival in lobular carcinoma cells. Deviyani Rao, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.

A40 FAK inhibition prevents AKT activation in response to mTOR inhibitors and synergistically inhibits breast cancer growth. Leslie Cuellar Vite, Case Western Reserve University, Cleveland, OH, United States.

A41 Identification of hormone-dependent IncRNAs that associate with estrogen signaling pathway in breast cancer. Satoshi Inoue, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.

A42 Identifying relationships between high expression levels of the HSPA9 gene, putative HSPA9 alterations, and patient survivability in invasive breast carcinomas. Kofi Khamit-Kush, Morehouse School of Medicine, Atlanta, GA, United States.

A43 Increase cyclin A expression is associated with antiprogestin resistance and progesterone receptor isoforms ratio in experimental models of breast cancer. Victoria Fabris, Instituto de Biologia y Medicina Experimental, Ciudad Autonoma De Buenos Aires, Buenos Aires, Argentina.

A45 Kinome rewiring reveals AURKA is a molecular barrier to the efficacy of PI3K/mTOR-pathway inhibitors in breast cancer. Sourav Bandyopadhyay, University of California, San Francisco, San Francisco, CA, United States.

A47 Long-term treatment of bortezomib reduced resistance to doxorubicin by reducing CerS6/GCS and elevating CerS2/GBA expressions. Park Woo-Jae, Department of Biochemistry, School of Medicine, Gachon University, Incheon, Korea, Republic Of.

A48 MET and EGFR interaction promotes acquired resistance to kinase inhibition in TNBC. Elizabeth Tovar, Van Andel Research Institute, Grand Rapids, MI, United States.

A49 Modeling “decathlon winner” cancer cells that drive therapy resistance and metastasis in triple-negative breast cancer. Balraj Singh, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

A50 Modeling and targeting of oncogenic proteotoxic stress in drug-resistant breast cancer. Navneet Singh, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States.

A51 Navitoclax improves response to chemotherapy treatment by eliminating senescent cells in vitro and in vivo. Sonia Rao, Tulane Medical School, New Orleans, LA, United States.

A52 N-CoR2 restricts breast cancer treatment by repressing the TLR anti-viral response. Kelvin Tsai, Taipei Medical University, Taipei, Taiwan.

A53 [10]-gingerol interferes with the adhesion of MDA-MB-231 tumor cells to extracellular matrix. Angelina Fuzer, Federal University of São Carlos, São Carlos, São Paulo, Brazil.

A54 A cellular and molecular atlas of the human breast for dissecting mechanisms of cell and tissue function. Rosalyn Sayaman, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.

A55 A prospective geriatric breast cancer cohort study to define unique features and outcomes in older breast cancer patients. Anne Noonan, The Ohio State University, Columbus, OH, United States.

A56 A SOX10-associated epigenetic program linking primitive differentiation state with reduced immunogenicity in triple-negative breast cancer. Jodi Saunus, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.

A57 Antisense oligonucleotide therapeutics with receptor-targeted delivery in triple negative breast cancer cells via microRNA blockade without passenger strand side effects. Yuan-Yuan Jin, Bound Therapeutics LLC, Marlton, NJ, United States.

A59 Assessment of conditional reprogramming to generate 2D and 3D primary human mammary cell culture models. Stacey Chung, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
A60 AURKA interaction with MEK1/2 complex and its role in promoting breast cancer cell metastasis. Malgorzata Gil, Roswell Park Cancer Institute, Buffalo, NY, United States.

A61 BRCA1-associated R-loop accumulation at non-coding putative ERα enhancer area block luminal epithelial differentiation. Huai-Chin Chiang, UT Health San Antonio, San Antonio, TX, United States.

A62 Canine pedigree analysis as a model of hereditary breast cancer. Anna Huskey, Auburn University, Auburn, AL, United States.

A63 Characterizing the role of ancestry-specific variants of the Duffy Antigen Receptor for Chemokines (DARC) gene in the breast tumor microenvironment. Rachel Martini, University of Georgia, Athens, GA, United States.

A64 Cold-inducible RNA binding protein (CIRP) links inflammation and breast cancer. Daniel Lujan, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.

A65 Dicistronic reporter screen for Internal Ribosome Entry Site (IRES) - mediated translational regulation of truncated p110 ERBB2 isoform. Yu Zong, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, United States.

A66 Differentiation dynamics of the developing mammary gland revealed by single-cell RNA-sequencing. Karsten Bach, Department of Pharmacology, Cambridge, United Kingdom.

A68 Effects of new ruthenium complexes on metastasis-related processes in breast cancer cells in vitro. Angelica Graminha, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil.

A69 Efficacy of Alternative 28 day Capecitabine Dosing Schedule in Metastatic Breast Cancer. Nicole Williams, The Stefanie Spielman Comprehensive Breast Center, Columbus, OH, United States.

A70 ESR1 mutations confer novel metastatic functions in genome-edited breast cancer models. Zheqi Li, University of Pittsburgh, Pittsburgh, PA, United States.

A71 Evaluation of ruthenium complex [Ru(AmSal)(dppe)2]PF6 on the proliferation, morphology and migration of triple negative MDA-MB-231 breast tumor cells. Cecília Popolin, Universidade Federal de São Carlos, São Carlos, SP, Brazil.

A72 Exploring the role of miR-223 loss in mammary epithelial cell transformation. Barbara Belletti, CRO of Aviano, Aviano, Italy.