
A02 Investigating the contribution of RAD51 paralog mutations to cancer development. Robert Baldock, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States.

A03, PR01 Cyclin E: Targeting cell cycle dependencies in CCNE1 amplified tumors. Kai Doberstein, University of Pennsylvania, Perelman School of Medicine, Ovarian Cancer Research Center, Philadelphia, PA, United States.

A04 Profiling DNA damage repair and immunophenotypes in BRCA1/2 mutated high-grade serous ovarian cancers. Anniina Farkkila, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.

A05 The contribution of pathogenic variants of cancer susceptibility genes for primary ovarian, fallopian tube, and peritoneal cancers in Japanese. Akira Hirasawa, Keio University School of Medicine, Tokyo, Japan.

A06 Cisplatin-induced DNA damage modifies the chromatin landscape of histone H2B monoubiquitination in a p53-dependent manner. Deborah Marsh, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, Nsw, Australia.

A07 53BP1-driven homologous recombination and PARP inhibitor resistance requires intact BRCA1-PALB2 association. Joseph Nacson, Fox Chase Cancer Center, Philadelphia, PA, United States.

A08 A novel system determines the functional significance of ovarian tumor mutations in the homologous recombination gene RAD51C. Meghan Sullivan, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, United States.

A09 Rational combinational therapy with PARP and BRD4 inhibitor in ovarian cancer. Chaoyang Sun, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

A10 Fatty acid synthesis inhibitor, Orlistat, potentiates cisplatin-induced toxicity in ovarian cancer cells. Bennett Van Houten, UPMC Hillman Cancer Center, Pittsburgh, PA, United States.

A11, PR02 Exploring the effects of PARP inhibition on CHK1 activation as a potential determinant of synergy with CHK1 inhibition. Monicka Wielgos-Bonvallet, NYU Langone Medical Center, New York, NY, United States.

A12 The metabolic stress mediator LKB1 is required for ovarian cancer metastasis. Adrian Buensuceso, The University of Western Ontario, London, ON, Canada.

A13, PR03 Arginine deprivation as a potential targeted therapy for clear cell ovarian carcinoma. Jennifer Xiao Ye Ji, University of British Columbia, Vancouver, BC, Canada.
A14 TP53 missense mutations associate with different metabolic pathways. Linda Kelemen, Medical University of South Carolina, Charleston, SC, United States.

A15 Fatty acid binding protein 4 is indispensable for ovarian cancer metastasis. Abir Mukherjee, University of Chicago, Chicago, IL, United States.

A16 COL11A1 confers cisplatin resistance through fatty acid oxidation in ovarian cancer cells. Miran Rada, Albany Medical College, Albany, NY, United States.

A17 NUAK1 acts as a growth suppressor in epithelial ovarian cancer. Trevor Shepherd, Western University, London, ON, Canada.

A18 Metabolomic analysis of ovarian cancer risk in the Nurses’ Health Studies: Metabolite associations are more pronounced in non-serous tumors. Oana Zeleznik, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States.

A19, PR04 Tumor-derived indoleamine 2,3-dioxygenase regulates density of tumor infiltrating CD8+ T cells and myeloid-derived suppressor cells in a murine model of ovarian cancer. Adaobi Amobi, Roswell Park Cancer Institute, Buffalo, NY, United States.

A20 Claudin-4 regulates ovarian tumor cell response to the microenvironment. Heidi Baumgartner, University of Colorado Denver - AMC, Aurora, CO, United States.

A21 Computational methods and novel in vitro model elucidate a therapeutic target against ovarian cancer metastasis. Molly Carroll, University of Wisconsin-Madison, Madison, WI, United States.

A22 Functional analysis of PGE2 pathway members EP4 and MRP4 in ovarian cancer. Mc Millan Ching, University of Maryland School of Medicine, Baltimore, MD, United States.

A23 Neuropilin-1 expression on regulatory T cells in ovarian cancer. Anthony Cillo, University of Pittsburgh, Pittsburgh, PA, United States.

A24 Ovarian cancer cells convert tissue specific normal stromal cells into tumor-promoting carcinoma-associated mesenchymal stem cells through epigenetic reprogramming. Lan Coffman, University of Pittsburgh, Pittsburgh, PA, United States.

A25 Tissue transglutaminase interacts with Frizzled 7 in ovarian cancer stem cells. Salvatore Condello, Northwestern University, Chicago, IL, United States.

A26 PTEN and colonization of the ovary in metastasis of fallopian tube-derived ovarian cancer. Matthew Dean, University of Illinois - Chicago, Chicago, IL, United States.

A27, PR05 Nicotinamide N-methyltransferase metabolically reprograms the stroma to promote ovarian cancer metastasis. Mark Eckert, University of Chicago, Chicago, IL, United States.
A28 Beta-escin inhibits ovarian cancer metastasis by targeting the tumor microenvironment. Hilary Kenny, University of Chicago, Chicago, IL, United States.

A29 Effects of lysophosphatidic acid on ovarian cancer metastatic dissemination. Yuliya Klymenko, University of Notre Dame, Notre Dame, IN, United States.

A30 Autotaxin-induced miRNA exportation and associated mechanisms contributing to tumorigenesis and immune modulation. Sudeepti Kuppa, University of Georgia, Athens, GA, United States.

A31 Mutant p53 increases integrin-ECM interactions in early HGSOC. Laura Lecker, Barts Cancer Institute, London, United Kingdom.

A32 Single cell RNAseq analysis of primary tumor and corresponding metastatic lesion in high grade serous ovarian cancer. Annette Lee, Feinstein Institute, Manhasset, NY, United States.

A33 Patient-specific evaluation of chemoresistance and tumor recurrence using ovarian cancer stem cell spheroids. Geeta Mehta, University of Michigan, Ann Arbor, MI, United States.

A34 Induction of a novel ETS1/FAK pathway in metastasizing ovarian cancer cells by the omental microenvironment primes them for metastatic colonization. Anirban Mitra, Indiana University, Bloomington, IN, United States.

A35 Ovarian cancer stem cells subvert tumor specific T cells by disrupting T cells metabolic fitness. Feng Qian, Roswell Park Institute, Buffalo, NY, United States.

A36 Hypoxic signaling in the tumor-mesothelial niche promotes collagen remodeling and ovarian cancer metastasis. Erinn Rankin, Stanford University, Stanford, CA, United States.

A37 Epigenetic modification of ovarian cancer immunogenicity. Pavlina Spiliopoulou, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland.

A38 Modeling ascites-induced changes in peritoneal mechanobiology and ovarian cancer metastatic success. M. Sharon Stack, University of Notre Dame, South Bend, IN, United States.

A39 An integrated molecular and metabolic approach for harnessing early relapse and chemoresistance in ovarian cancer. Marina Bagnoli, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.

A40 Specific mutations in the D1-D2 linker region of VCP/p97 enhance ATPase activity and confer resistance to VCP inhibitors. Prabhakar Bastola, University of Kansas Medical Center, Kansas City, KS, United States.
A41 Ovarian cancer as an infectious disease: Targeting of mitochondrial activity to prevent and treat recurrent ovarian cancer. Martina Bazzaro, University of Minnesota, Minneapolis, MN, United States.

A42 TR3/NR4A1 as a therapeutic target for ovarian cancer. Alicia Beeghly-Fadiel, Vanderbilt University Medical Center, Nashville, TN, United States.

A43 Nucleotide excision repair proteins ERCC1 and XPC, and tumor-infiltrating lymphocytes are biomarkers of neoadjuvant platinum resistance in high grade serous ovarian cancer. Nikola Bowden, University of Newcastle, Newcastle, Australia.

A44 Chemical biology approach to phenotypic intra-tumor heterogeneity as a source of chemotherapy resistance in high-grade serous ovarian cancer. Daria Bulanova, Institute for Molecular Medicine Finland, Helsinki, Finland.

A45 Treatment patterns and outcomes among platinum-refractory/resistant ovarian cancer patients. Jane Chang, Pfizer, New York, NY, United States.

A46 Hsp90 regulates Twist1 expression through STAT3 to induce epithelial-mesenchymal transition in ovarian cancer. Kay Chong, Yale University, New Haven, CT, United States.

A47, PR06 ARIEL3: A phase 3, randomized, double-blind study of rucaparib vs placebo following response to platinum-based chemotherapy for recurrent ovarian cancer (OC). Robert Coleman, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

A48 Cancer-selective targeting of ribosomal biogenesis in ovarian cancer. Robert Cornelison, University of Virginia, Charlottesville, VA, United States.

A49 FAK signaling supports platinum-resistant ovarian cancer stem cells. Carlos Diaz Osterman, UCSD Moores Cancer Center, La Jolla, CA, United States.

A50 EP4 receptor antagonism in paclitaxel-resistant ovarian clear cell carcinomas. Cong Fan, University of Maryland School of Medicine, Baltimore, MD, United States.

A51 FOXM1 inhibition by thiostrepton synergizes with olaparib by attenuating adaptive response in ovarian cancer cells. Pingping Fang, The University of Kansas Medical Center, Kansas City, KS, United States.

A52 Potassium channel activator Minoxidil (Rogaine) as a novel single-agent or combination therapy in ovarian cancer. Saverio Gentile, Loyola University Chicago, Maywood, IL, United States.

A53 Precision therapeutic targeting of DNA damage repair defects in ovarian cancer through molecular profiling of patient-derived tumor organoids. Sarah Hill, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.
A54 Generation and characterization of a novel panel of platinum resistant HGSOC models. Joseph Hoare, Barts Cancer Institute, QMUL, London, United Kingdom.

A55 PR07 Combined MEK and BCL-2/XI inhibition as a potential drug combination for the treatment of high-grade serous ovarian cancer. Claudia Iavarone, Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States.

A56 Development of a cloud-based machine learning system (CLOBNET) to predict platinum resistance in high-grade serous ovarian cancer. Veli-Matti Isoviita, University of Helsinki, Helsinki, Finland.

A57 Drug sensitivity and resistance testing (DSRT) of clinically important compounds on primary ovarian cancer cell lines. Katja Kaipio, University of Turku, Department of Pathology and Forensic Medicine, Turku, Finland.

A58 Transcription factor SREBP2 mediates ovarian cancer drug resistance and recurrence. Galina Karashchuk, Department of Pathology, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States.

A59 Polyploid embryonic-like cancer stem cells, tumor origin, and therapeutic resistance. Jinsong Liu, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

A60 Drug resistance and phenotype of 2D- and 3D-cultured ovarian cancer patient samples. Danielle Llaneza, University of Virginia, Charlottesville, VA, United States.

A61 Ascites-derived and tissue-derived ovarian cancer cell primary 3D cultures aimed for personalized medicine. Yoshiko Nanki, Keio University School of Medicine, Tokyo, Japan.

A62 ALDH1a1 as a target in ovarian cancer stem cells. Nkechiyere Nwani, Northwestern University, Chicago, IL, United States.

A63 Estrogen receptor signaling in fallopian tube epithelia of BRCA mutation carriers. Sophia George, Sylvester Comprehensive Cancer Center, Miami, FL, United States.

A64 Oxidative stress via inhibition of the mitochondrial electron transport and Nrf-2-mediated anti-oxidative response regulate the cytotoxic activity of plumbagin and related compounds. Manish Patankar, UW-Madison, Madison, WI, United States.

A65 Combination of a thioxodihydroquinazolinone compound with cisplatin eliminates ovarian cancer stem cell-like cells (CSC-LCs) and shows preclinical potential. Wei Qian, University of Pittsburgh, Pittsburgh, PA, United States.

A66 The tissue transglutaminase 2–fibronectin protein complex: A new target in ovarian cancer. Livia Sima, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
Poster Session A
Monday, October 2, 2017
6:00 p.m.–8:30 p.m.
Grand Ballroom 3–4

A67 Effects of the atypical PKC-ι inhibitor ICA-1 on ovarian cancer proliferation and survival. Tracess Smalley, University of South Florida, Tampa, FL, United States.

A68 Stabilization of SNAIL by USP-1 mediates chemoresistance and cell plasticity in epithelial ovarian cancer. Maura Sonego, CRO Aviano, IRCCS, National Cancer Institute, Aviano, PN, Italy.

A69 High-throughput screening of primary ovarian cancer 3D organoids identifies patient-specific sensitivities. Alice Soragni, UCLA, Los Angeles, CA, United States.

A70 Metformin alters the gut microbiota of ovarian cancer patients treated with carboplatin/paclitaxel chemotherapy and enhances sensitivity in resistant tumors. Dana Walsh, Mayo Clinic, Rochester, MN, United States.

A71 Prospective collection and genomic analysis of serial blood and tissue samples from patients with ovarian cancer treated with neoadjuvant chemotherapy. Elizabeth Stover, Dana-Farber Cancer Institute, Boston, MA, United States.

A72 PARP vs PARG: exploring Poly (ADP-ribose) glycohydrolase inhibitors in the context of high grade serous ovarian cancer. Stephen Taylor, Manchester Cancer Research Centre, Manchester, United Kingdom.

A73 Mechanism of tumor suppressor miRNA let-7 downregulation in ovarian cancer: The epithelial-mesenchymal transition factor Snail is associated with stemness and represses let-7. Julia Unternaehrer-Hamm, Loma Linda University, Loma Linda, CA, United States.

A74 Identification of novel targetable resistance mechanisms and candidate clinical response biomarkers in drug-resistant ovarian cancer, following single agent and combination chemotherapy. Aparajitha Vaidyanathan, University of Dundee, Ninewells Hospital & Medical School, Dundee, United Kingdom.

A75 Applying precision medicine to ovarian cancer: Proof-of-principle for a “molecular second look”. John Martignetti, Icahn School of Medicine at Mount Sinai, New York, NY, United States.

A76 Immunological changes following intraperitoneal administration of a formulated IL-12 plasmid in combination with standard neoadjuvant chemo in newly diagnosed advanced stage ovarian cancer patients. Khursheed Anwer, Celsion Corporation, Lawrenceville, NJ, United States.