A01 A comparison of the mechanisms and cytotoxic activity of dianhydrogalactitol (VAL-083) to cisplatin in ovarian tumor models harboring wild-type and mutant p53. Jeffrey Bacha, DelMar Pharmaceuticals, Inc., Vancouver, BC, Canada.

A02 CDK6 controls platinum sensitivity via the regulation of FOXO3a/ATR: a new actionable pathway for ovarian cancer patients. Gustavo Baldassarre, CRO, National Cancer Institute, Aviano, Italy.

A03 PARP inhibitor Nanotherapy for Ovarian Cancer. Paige Baldwin, Northeastern University, Boston, MA, United States.

A05 BRCA1 promoter hypermethylation loss in recurrent high-grade serous carcinoma. Fanny Dao, Memorial Sloan Kettering Cancer Center, New York, NY, United States.

A06, PR05 Identifying potential targets in Cyclin E amplified tumors. Kai Doberstein, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.

A07 Homologous recombination mutations and overall survival in high grade serous, endometrioid, and clear cell ovarian carcinomas. Maria Harrell, University of Washington, Seattle, WA, United States.

A08 Targeting the ATR/CHK1 axis in BRCA1/2 mutant ovarian cancer using an orthotopic patient-derived xenograft (PDX) model. Hyoung Kim, University of Pennsylvania, Philadelphia, PA, United States.

A09 Targeting chemoresistant ovarian malignancies to cytostatic drugs and PARP inhibitors by inhibition of CDK12 kinase activity. Jiri Kohoutek, Veterinary Research Institution, Brno, Czech Republic.

A10, PR14 Exploiting synthetic lethality between the MK2 and p53 pathways with nanotechnology to sensitize ovarian cancer to chemotherapy. Yi Wen Kong, Massachusetts Institute of Technology, Cambridge, MA, United States.

A11 NGS-based tumor genomic profiling to identify ovarian cancer patients who benefit from the PARP inhibitor rucaparib. Iain McNeish, University of Glasgow, Glasgow, United Kingdom.

A12 Mutations in Homologous Recombination Genes and Response to Treatment in GOG 218: an NRG Oncology Study. Barbara Norquist, University of Washington, Seattle, WA, United States.

A13 Transferrin facilitates the formation of DNA-double strand breaks via transferrin receptor 1 in fallopian tube epithelial cells. Shogo Shigeta, Obstetrics and Gynecology, Tohoku University School of Medicine, Sendai, Miyagi, Japan.
A14, PR02 Identification of germline and somatic alterations in homologous recombination pathway genes in high grade ovarian carcinomas and response to the PARP inhibitor rucaparib in ARIEL2. Elizabeth Swisher, University of Washington School of Medicine, Seattle, WA, United States.

A15 The histone deacetylase inhibitor panobinostat sensitizes cyclin E-amplified ovarian cancer cells to poly ADP ribose polymerase inhibitors via E2F1 downregulation. Andrew Wilson, Vanderbilt University Medical Center, Nashville, TN, United States.

A16 Regulation of TRAIL and NF-kappaB Pathways in Ovarian Cancer. Mariam Anees, Quaid-i-Azam University, Islamabad, Pakistan.

A17 The effects of atypical PKC inhibitors ICA-1 and ACPD on ovarian cancer cell proliferation, RNA levels and atypical PKC levels. Christopher Apostolatos, University of South Florida, Tampa, FL, United States.

A18 Targeting the Wntβ-catenin pathway in primary ovarian cancer with the porcupine inhibitor WNT974. Rebecca Arend, University of Alabama, Birmingham, AL, United States.

A19 Cytoplasmic ARID1A and Poor Outcome in Ovarian Cancer Patients. Nicholas Bateman, Women’s Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, VA, United States.

A20 Short-form Ron kinase as a novel therapeutic target in ovarian cancer. Magdalena Bieniasz, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.

A21 Ovarian tumor cells’ adhesion and cell signaling pathways are regulated by ARID3B. Alexander Bobbs, Harper Cancer Research Institute, South Bend, IN, United States.

A22 Direct upregulation of STAT3 by miR551b in ovarian cancer. Pradeep Chaluvally-Raghavan, University of Texas MD Anderson Cancer Center, Houston, TX, United States.

A23 The dual roles of microRNA-200: From inclusion cyst formation to cell migration. Pui Wah Choi, Brigham and women’s hospital, Boston, MA, United States.

A24 Hypoxia signaling pathway plays a role in ovarian cancer chemoresistance. Noelle Cutter, Molloy College, Rockville Centre, NY, United States.

A25 BRAFV600E mutations in serous ovarian cancer and response to the BRAF inhibitor, dabrafenib. Anna DeFazio, The Westmead Millennium Institute; The University of Sydney; Westmead Hospital, Sydney, NSW, Australia.

A26 Levels of phospho-Connexin 43 and phospho-TRKB in epithelial ovarian cancer. Maritza Garrido, Laboratory of Endocrinology and Reproductive Biology, University of Chile Clinical Hospital, Santiago, Chile.
A27 Transcriptome analyses of human ampulla and fimbriae highlight similarities and differences. Sophia George, University of Miami, Miami, FL, United States.

A28 Osteopontin splicing isoforms expression is modulated by partial epithelial mesenchymal transition in ovarian carcinoma cells. Etel Gimba, Instituto Nacional de Cancer, Rio De Janeiro, Brazil.

A29 YAP interacts with the ERBB signaling pathway to control ovarian surface epithelial cell tumorigenesis. Chunbo He, University of Nebraska Medical Center, Omaha, NE, United States.

A31 High-grade serous ovarian cancer subtyping identifies pathways for targeted therapy. Kaisa Huhtinen, Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.

A32 PBX1, a Transcriptional Regulator, Promotes Stemness and Chemoresistance in Ovarian Cancer. Jin-Gyoung Jung, Johns Hopkins University, Baltimore, MD, United States.

A33 Dual loss of the SWI/SNF complex ATPases SMARCA4/BRG1 and SMARCA2/BRM is highly sensitive and specific for small cell carcinoma of the ovary, hypercalcemic type. Anthony Karnezis, University of British Columbia, Vancouver, BC, Canada.

A34 Activation-induced cytidine deaminase links ovulation-induced inflammation and serous carcinogenesis. Keren Levanon, Chaim Sheba Medical Center, Ramat Gan, Israel.

A35 Elucidating mechanisms involved in long-term response to platinum-based chemotherapy in high grade serous ovarian cancer. Stephanie Lheureux, Princess Margaret Cancer Centre, Toronto, ON, Canada.

A36, PR18 Survival of ARHI-induced dormant autophagic cell death in vivo requires permissive levels of VEGF, IL-8 and IGF-1 in the tumor microenvironment. Zhen Lu, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

A37 Yes-associated protein 1 (YAP) in the growth and tumorigenesis of ovarian granulosa cells. Xiangmin Lv, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States.

A38 Identification through functional genomics screening of factors whose down-regulation enhances the side population in ovarian cancer. Noriomi Matsumura, Kyoto University, Kyoto, Japan.

A39 FOXO1 is a Key Determinant of Progesterone Receptor Isoform-Specific Senescence Programming in Ovarian Cancer Cells. Laura Mauro, University of Minnesota, Twin Cities, MN, United States.
A40 Regulation of PAX2 in fallopian tube epithelium and high-grade serous ovarian carcinoma. Dimple Modi, University of Illinois at Chicago, Chicago, IL, United States.

A41 The Heat Shock Transcription Factor HSF1 Induces Ovarian Cancer Epithelial-Mesenchymal Transition in a 3D Spheroid Growth Model. Trillitye Paullin, University of South Florida, Tampa, FL, United States.

A43 DIRAS1 and DIRAS2 are tumor suppressor candidates that inhibit cell growth, motility and proliferation while regulating autophagy in ovarian cancer. Margie Sutton, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

A44 CLINICAL VALUE OF IMMUNOHISTOCHEMICAL EXPRESSION OF EGFL7 WITHIN HIGH GRADE SEROUS OVARIAN CANCER TISSUE. Jacek Sznurkowski, Medical University of Gdansk, Gdansk, Poland.

A45 Proteins involved in the Calreticulin translocation pathway are altered in human ovarian cancer samples. Carolina Vera, Laboratory of Endocrinology and Reproductive Biology, University of Chile Clinical Hospital, Santiago, Chile.

A46 Targeting transcriptional networks for ovarian cancer therapy. Sarah Walker, Dana-Farber Cancer Institute, Boston, MA, United States.

A47 TGF-β inhibitors reduce ovarian cancer cells proliferation, migration & invasion in vitro. QING ZHANG, Mayo Clinic, Rochester, MN, United States.

A48 Ovarian tumor-induced immunosuppression of NK cells and its prevention by dietary supplementation of herbal Withaferin A (Ashwagandha). Animesh Barua, Rush University Medical Center, Chicago, IL, United States.

A50 Chemoimmunotherapy with PD-1 blockade and paclitaxel induce a potent antitumor immunity in ovarian cancers. Junzo Hamanishi, Kyoto university, Kyoto, Japan.

A51, PR03 Combinatorial blockade of PD-1, CTLA-4, and LAG-3 pathways inhibits murine ovarian tumor growth. Ruea-Yea Huang, Roswell Park Cancer Institute, Buffalo, NY, United States.

A52 Efficacy of specified Natural Killer (NK) cells in ovarian cancer xenograft models. Young Jae Lee, Asan Medical Center, Seoul, Korea, Republic Of.

A53 Combining oncolytic virotherapy with immunotherapy for ovarian cancer treatment. AJ Robert McGray, Roswell Park Cancer Institute, Buffalo, NY, United States.
A54 Regulating MUC16 expression to decrease ovarian tumor proliferation and increase efficacy of therapeutic antibodies. Manish Patankar, University of Wisconsin-Madison, Madison, WI, United States.

A55, PR04 Epigenetic treatment of ovarian cancer cells increases immune cell recruitment to the tumor microenvironment: Implications for response to immune checkpoint therapy. Meredith Stone, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States.

A56 Inhibition of Snail-induced EMT promotes anti-tumor immune response in ovarian cancer. MANA TAKI, KYOTO UNIVERSITY, Kyoto, Japan.

A57 Platinum induces IL-6-signaling mediated activation of ALDH1A1 and enriches the cancer stem cell population in ovarian cancer. Yinu Wang, Indiana University, Bloomington, IN, United States.

A58 Bispecific anti-CD3-folate for the treatment of ovarian cancer. Jinming Xia, Ambrx, Inc, La Jolla, CA, United States.

A59 PD-L1 biology in response to chemotherapy in vitro and in vivo in ovarian cancer. Feitianzhi Zeng, Magee Womens Research Institute, Pittsburgh, PA, United States.

A60 DNA copy-number alterations in primary ovarian serous cystadenocarcinoma encoding for cell transformation and predicting survival and response to platinum therapy throughout the course of the disease. Orly Alter, University of Utah, Salt Lake City, UT, United States.

A61 Detection of ovarian cancer micrometastasis using nanoparticle-delivered probe targeted towards tumor-associated neovasculature. Ayesha Alvero, Yale University, New Haven, CT, United States.

A62 TRX-1 targets chemoresistant tumor-initiating cells and prolongs survival in a recurrent ovarian cancer animal model. Ayesha Alvero, Yale University, New Haven, CT, United States.

A63 The importance of cyclooxygenase 1 and 2 expression in ovarian cancer survival: notable differences by histologic subtype. Alicia Beeghly-Fadiel, Vanderbilt University Medical Center, Nashville, TN, United States.

A64 β-catenin as a TIC therapeutic target in epithelial ovarian cancer. Anil Belur Nagaraj, CASE WESTERN RESERVE UNIVERSITY, Cleveland, OH, United States.

A65 NODAL CONTRIBUTES TO CISPLATIN RESISTANCE IN OVARIAN CANCER CELLS. Olena Bilyk, University of Alberta, Edmonton, AB, Canada.

A66 The CD73⁺/CD24⁻ subpopulation of ovarian cancer cells is enriched in cancer stem cells. Ugo Cavallaro, European Institute of Oncology, Milano, Italy.
Poster Session A
Sunday, October 15, 2015
5:30 p.m.–7:30 p.m.
Plaza International Ballroom D–F

A67 Impact of estrogen on the response of ovarian tumor cells to cisplatin. Georgina Cheng, University of Colorado, Aurora, CO, United States.

A68 Sphingosine kinase 1 as a mediator and predictor of metformin’s protective effect in ovarian cancer. Tatsuyuki Chiyoda, The University of Chicago, Chicago, IL, United States.

A69 The PAX8 cistrome in benign and malignant Mullerian epithelia. Kevin Elias, Brigham and Women's Hospital, Boston, MA, United States.

A70 Epigenome and genome alterations in platinum resistant ovarian tumors. Fang Fang, Indiana University, Bloomington, IN, United States.

A71 The Receptor Tyrosine Kinase, AXL, is a Therapeutic Target Driving the Mesenchymal Phenotype in Ovarian Cancer. Katherine Fuh, Washington University, St. Louis, MO, United States.

A72 Dissecting the role of NF-kappaB signaling in ovarian cancer tumor-initiating cells. Carrie House, National Cancer Institute, Bethesda, MD, United States.

A73 CDK4/6 inhibition as maintenance therapy in ovarian cancer. Mangala Iyengar, University of Michigan, Ann Arbor, MI, United States.

A74 Proteasome subunit RPN13 as a candidate target for treatment of ovarian carcinoma. Rosie Jiang, The Johns Hopkins University, Baltimore, MD, United States.

A75 Big data and computational biology method for personalized prognosis of high grade serous ovarian carcinoma. Vladimir Kuznetsov, Bioinformatics Institute, Singapore, Singapore.

A76 Targeting phosphodiesterase 10A for chemoprevention and treatment of ovarian cancer. Luciana Madeira da Silva, University of South Alabama - Mitchell Cancer Institute, Mobile, AL, United States.

A77 Validation of the EORTC QLQ-OV28 instrument for the assessment of quality of life in women with ovarian carcinoma in Mexico. Luis Onate-Ocana, Instituto Nacional de Cancerologia, Mexico, D.F., Mexico.

A78 Serum metabolomics, cytokine measurements, and tumor RNA-seq identified phospholipids correlated with a molecular subclass as strong predictor for outcome in high grade serous ovarian cancer. Dietmar Pils, Comprehensive Cancer Center & Medical University of Vienna, Vienna, Austria.

A79 Thioxodihydroquinazolinone small molecules that sensitize ovarian cancer stem cells to platinum therapy. Wei Qian, University of Pittsburgh, Pittsburgh, PA, United States.

A80 NAC1 attenuates BCL6 negative autoregulation and functions as a BCL6 coactivator of FOXQ1 transcription in ovarian cancer (OVCA). Leticia Rangel, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil.
A81 Targeting of free fatty acid signaling in ovarian cancer may serve as a potential therapeutic approach. Ramandeep Rattan, Henry Ford Hospital, Detroit, MI, United States.

A82 Ovarian cancer cells hijack immune functions of omental milky spots for metastatic colonization. Carrie Rinker-Schaeffer, University of Chicago School of Medicine, Chicago, IL, United States.

A83 Profiling potent, novel protein tyrosine phosphatase 4A3 small molecule inhibitors for ovarian cancer. Elizabeth Sharlow, University of Virginia, Charlottesville, VA, United States.