A01 Single nucleotide polymorphism in the microRNA-199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes. Jihui Hao, Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.

A02 Assessment of germline cancer predisposition genes in 392 unselected pancreatic cancer patients. Skye McKay, Garvan Institute of Medical Research, Sydney, NSW, Australia.

A03 Microbiomes in human pancreatic cancer. Dominique Michaud, Tufts University, Boston, MA, United States.


A05 Proteomic analysis of exosome content changes induced by gemcitabine in pancreatic cancer stromal cells. Wei Huang, University of Notre Dame, Notre Dame, IN, United States.


A07 Identification of endocrine/metabolic biomarkers associated to early PDC in a transgenic mouse model. Valentina Pasquale, Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy.

A08 Prediction of histologic grade of precancerous cystic lesions using picodroplet PCR-enabled targeted sequencing. Andrew Rhim, University of Michigan, Ann Arbor, MI, United States.


A10 Biomarker independant microfluidic Labyrinth for the high throughput enrichment and characterization of circulating tumor cells in pancreatic cancer. Lianette Rivera-Baez, University of Michigan, Ann Arbor, MI, United States.


A12 Analysis of circulating epithelial and EMT-like CTCs in pancreatic cancer using a microfluidic CTC carpet device. Mina Zeinali, University of Michigan, Ann Arbor, MI, United States.

A13, PR05 Genome-scale CRISPR-Cas9 screening to identify essential genes and pathways in pancreatic cancer. Andrew Aguirre, Dana-Farber Cancer Institute, Boston, MA, United States.
A14 Engineering pancreatic cancer through molecular and cellular reconstruction. Naoki Akanuma, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.


A16 Investigating Brd4 action in pancreatic cancer. Direna Alonso-Curbelo, Memorial Sloan-Kettering Cancer Center, NY, United States.

A17, PR03 Mutant p53 promotes adenocarcinoma in pancreatic ductal cells. Jennifer Bailey, The University of Texas Health Science Center at Houston, Houston, TX, United States.

A18 The integrin αvβ6 regulates PDAC cell growth and stromal cell behaviour. John Marshall, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom.

A19 Fundamental significance of specific KRAS mutant types for prognosis of unresectable pancreatic cancer patients. Lucie Benesova, Genomac research institute, Prague, Czech Republic.

A20 Detection and quantification of ctDNA KRAS mutations from patients with unresectable pancreatic cancer. Fernando Blanco, Trovagene, Inc, San Diego, CA, United States.

A21 Chemokine directed migration of activated stellate cells in pancreatic ductal adenocarcinoma. Kathleen Boyle, Medical College of Wisconsin, Milwaukee, WI, United States.

A22 Targeting S100p sensitizes pancreatic cancer cells towards gemcitabine. Yangchao Chen, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.


A24 Role of IL-1 signaling in regulating the KRasG12D-PanIN microenvironment: implications for PanIN establishment and progression. Shipra Das, NYU Langone Medical Center, New York, NY, United States.

A25 Pancreatic cancer cells scavenge complex lipids from stroma in the hypoxic tumor microenvironment. Petrus de Jong, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.

A26 Functional optical probes for dynamic mapping of the chemical and biophysical tumor microenvironment. Christopher DuFort, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.


A28 Differentially expressed microRNA profiles in pancreatic ductal and ampullary adenocarcinomas. Tainara Felix, Faculty of Medicine, UNESP, Sao Paulo State University, Botucatu, SP, Brazil.

A29 Involvement of JAK-STAT signaling in human pancreatic adenocarcinoma cell lines and suitability for targeted therapy. Jesse Fest, Erasmus Medical Center, Rotterdam, Netherlands.

A30 Chronic inflammation induces severe stromal damage and early pancreatic tumors in mice with activated Akt1 and KRas. Sarah Gitto, University of Central Florida, Orlando, FL, United States.

A32 GFAT: The crossroads of glucose and glutamine metabolism in pancreatic cancer. Christopher Halbrook, University of Michigan, Ann Arbor, MI, United States.

A33 The ETS-Transcription Factor ETV1 Regulates Stromal Expansion and Metastasis in Pancreatic Cancer. Steffen Heeg, Department of Medicine II, University of Freiburg - Medical Center, Freiburg, Germany.

A34 Oncogenic KRAS regulates pancreatic cancer cell signaling via stromal reciprocation. Claus Jorgensen, CRUK Manchester Institute, The University of Manchester, Manchester, United Kingdom.


A36 The pattern of exosomal marker (CD63) expression using immunohistochemistry (IHC) in malignant and non-malignant (normal, inflammatory and pre-malignant) ductal cells in resected pancreatic tissues. Marcus Tan, Mitchell Cancer Institute, The University of South Alabama, Mobile, AL, United States.

A37 Targeting RAGE in pancreatic cancer using monoclonal antibodies. Estelle Leclerc, North Dakota State University, Fargo, ND, United States.

A38 Hif1α deletion reveals pro-neoplastic function of B cells in pancreatic neoplasia. Kyoung Eun Lee, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.

A39 Expression of alternatively spliced tissue factor in pancreatic neuroendocrine tumors. Clayton Lewis, University of Cincinnati College of Medicine, Cincinnati, OH, United States.

A40 Gene expression profiling of pancreatic cancer precursors directly from formalin fixed paraffin embedded (FFPE) tissue without nucleic acid extraction. Bryan Lo, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.

A41 GPRC5A acts as a potent oncogene in pancreatic cancer. Eric Londin, Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.

A42 The stem cell signal Musashi is required for pancreatic cancer progression and therapy resistance. Nikki Lytle, University of California, San Diego, La Jolla, CA, United States.

A43 Activin receptor type IA in pancreatic cancer and its implications in tumor progression. Georgina Mancinelli, University of Illinois at Chicago, Chicago, IL, United States.

A44 Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer. Pawel Mazur, Stanford University, Stanford, PA, United States.

A45 Neat1 is a p53-inducible lincRNA important for pancreatic cancer suppression. Stephano Mello, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States.

A46 AdipoRon suppresses ERK and STAT3 to inhibit pancreatic cancer growth. Fanuel Messaggio, University of Miami, Miami, FL, United States.

A47 The acinar differentiation factor PTF1A negatively regulates EGFR-mediated acinar cell reprogramming. Shuba Narayanan, University of Utah, Salt Lake City, UT, United States.

A49 Pharmacologic inhibition of PIM kinases in combination with chemotherapeutic drugs decreases cell viability of pancreatic cancer cells. Brittany Nixon, North Carolina Central University, Durham, NC, United States.

A50 Genotype tunes PDAC tension to induce matricellular-fibrosis and tumor aggression. Michael Pickup, UCSF, San Francisco, CA, United States.

A51 Notch4 acts as an oncogenic signal in pancreatic tumorigenesis. Wanglong Qiu, Columbia University Medical Center, NY, United States.

A52 Stromal fibroblasts facilitate pancreatic cancer cell invasion by a novel invadopodia-independent matrix degradation process. Gina Razidlo, Mayo Clinic, Rochester, MN, United States.

A53 ADAM12 contributes to the malignant potential of pancreatic cancer and may serve as a non-invasive biomarker for its detection. Roopali Roy, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.

A54 The role of discoidin domain receptor 1 in pancreatic injury and pancreatic tumorigenesis. Jeanine Ruggeri, University of Michigan, Ann Arbor, MI, United States.

A55 Overexpression of the basic helix-loop-helix transcription factor, E47, promotes p16-independent senescence in established and patient-derived xenograft lines. Kathleen Scully, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.

A56 Targeting eIF4A dependent translation as therapeutics in pancreatic cancer. Kamini Singh, Memorial Sloan Kettering Cancer Center, New York, NY, United States.

A57 Nerves are abundant in the PanIN microenvironment and promote PanIN organoid proliferation via the neuropeptide substance P (SP). Smrita Sinha, Memorial Sloan Kettering Cancer Center, New York, NY, United States.

A58 ATM deficiency increases genomic instability and metastatic potential in murine pancreatic ductal adenocarcinoma. Beatriz Sosa-Pineda, Northwestern University Feinberg Medical School, Chicago, IL, United States.

A59 Crosstalk of different macrophage populations with pancreatic acinar or PanIN cells and contribution to development of pancreatic cancer. Peter Storz, Mayo Clinic, Jacksonville, FL, United States.

A60 Loss of PDX1 sensitizes acinar cells to oncogenic KRAS induced transformation. Kenneth Takeuchi, University of Michigan, Ann Arbor, MI, United States.

A61 CAF-derived ANXA6+ exosomes support pancreatic cancer aggressiveness and serve as a circulating biomarker. Richard Tomasini, CRCM, Marseille, France.

A62 ATDC is required for KRAS-induced pancreatic tumorigenesis. Lidong Wang, University of Michigan, Ann Arbor, MI, United States.

A63 Human pancreatic cells have distinct aspects in induction of acinar to ductal metaplasia. Pei Wang, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.

A65 Initiation of pancreatic metaplasia requires ADAM17-mediated autocrine signaling, not paracrine signaling derived from macrophages. Hui-Ju Wen, University of Michigan, Ann Arbor, United States.

A66 Runx3 drives metastatic programs in pancreas cancer. Martin Whittle, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.

A67 TFF (Trefoil Factor Family) is a novel tumor suppressor and can be the therapeutic target for pancreatic cancer. Junpei Yamaguchi, Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.

A68 Oncogenic Kras prevents myeloid cell-mediated pancreatic tissue repair. Yaqing Zhang, University of Michigan, Ann Arbor, MI, United States.


A70 Identification of pancreatic cancer neoantigens by exome and RNA sequencing analysis. Darren Cullinan, Department of Surgery, Washington University, St. Louis, MO, United States.

A71 Targeting immunotherapy to the pancreatic tumor microenvironment. Stephanie Dougan, Dana-Farber Cancer Institute, Boston, MA, United States.

A72 Phase 1 study of nivolumab (nivo) + nab-paclitaxel (nab-P) ± gemcitabine (G) in pancreatic cancer (PC): safety evaluation of patients treated with nivo + nab-P in arm A. Howard Hochster, Yale Cancer Center, New Haven, CT, United States.


A74, PR11 Dual CCR2/CXCR2 chemokine receptor blockade prevents tumor compensatory myeloid recruitment in pancreatic cancer. Timothy Nywening, Washington University, St Louis, MO, United States.

A75 Meloxicam and nimesulide modulate immunity in pancreatic cancer. Erik Ramos, Centro de Investigacion del Cancer en Sonora, Ciudad Obregon, Sonora, Mexico.

A76 Influence of IL-17-secreting immune cells on pancreatic cancer stemness. Yu Zhang, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

A77 Screening of conditionally reprogrammed patient-derived carcinoma cells identifies ERCC3-MYC interactions as a target in pancreatic cancer. Igor Astsaturov, Fox Chase Cancer Center, Philadelphia, PA, United States.

A78 Enhancing pancreatic cancer chemotherapy response by targeted inhibition of TGFβ induced tumorigenic signaling. Niranjan Awasthi, Indiana University School of Medicine, South Bend, IN, United States.

A79 Cysteine deprivation, but not glutathione depletion, causes ferroptotic cell death in pancreatic cancer cells. Michael Badgley, Columbia University, New York City, NY, United States.
A80 Targeted depletion of extracellular matrix components in PDA eases barriers to treatment. Markus Carlson, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.

A81 Peripheral immune biomarkers as a predictor of pancreatic cancer progression. Jill Gershan, Medical College of Wisconsin, Milwaukee, WI, United States.

A82 Ultra-specific isolation of circulating tumor cells enables rare-cell RNA profiling. Rhonda Jack, University of Michigan, Ann Arbor, MI, United States.

A83 Identifying metabolic dependencies in obesity-associated pancreatic cancer. Nada Kalaany, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States.

A84 PDAC initiation and progression occurs more rapidly from KrasG12D-expressing ductal cells than KrasG12D-expressing acinar cells in the absence of Trp53. Janel Kopp, The University of British Columbia, Vancouver, British Columbia, Canada.

A85 Metabolic wiring dictates GOT1 dependency in pancreatic cancer. Costas Lyssiotis, University of Michigan, Ann Arbor, MI, United States.

A86 Piperlongumine enhances the efficacy of gemcitabine in pancreatic cancer cells in vitro and in vivo. Jiyan Mohammad, North Dakota State University, Fargo, ND, United States.

A87 ATDC regulates the NRF2-mediated antioxidant response in pancreatic cancer. Vinee Purohit, University of Michigan Health System, Ann Arbor, MI, United States.

A88 The synthetic triterpenoid CDDO-Imidazolide reduces immune cell infiltration and cytokine secretion in the KC mouse model of pancreatic cancer. Ana Sofia Leal, Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan, United States.

A89 Is it justified to have pancreaticoduodenectomy in elderly patients with pancreatic malignancy- a population-based study. Ching-Yao Yang, National Taiwan University Hospital, Taipei, Taiwan.

A90 Mesothelin confers tumor cell vulnerabilities for gefitinib treatment. Qizhi Yao, Baylor College of Medicine, Houston, TX, United States.