B01 Epigenetic alterations mediated by Ring1b are crucial for acinar-to-ductal metaplasia and pancreatic carcinogenesis. Simone Benitz, Klinikum rechts der Isar, Technische Universität München, München, Germany.

B02, PR04 Nrf2 promotes mRNA translation in pancreatic cancer. Iok In Christine Chio, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States.

B03 Pancreatic cancer stem cells: Can it be restrained? Neha Chopra, Sir Gangaram Hospital, New Delhi, India.

B04 NRF2 regulates serine biosynthesis in pancreatic ductal adenocarcinoma. Gina DeNicola, Weill Cornell Medicine, New York, NY, United States.

B05 Ecto-5'-nucleotidase (CD73) confers radioresistance in pancreatic cancer. Yuchun Du, University of Arkansas, Fayetteville, AR, United States.

B06 Slug inhibits pancreatic cancer initiation by blocking Kras-induced acinar-ductal metaplasia. Kazumi Ebine, Northwestern University, Chicago, IL, United States.

B07 Macrophage-derived prolactin promotes pancreatic cancer progression. Farzad Esni, University of Pittsburgh, Pittsburgh, PA, United States.

B08 ER chaperone GRP78 increases chemoresistance in pancreatic ductal adenocarcinoma. Jenifer Gifford, University of Notre Dame, South Bend, IN, United States.

B09 TGFβ1 expression may ameliorate the poor survival associated with high KRAS expression in patients with resectable pancreatic carcinoma. Evan Glazer, Moffitt Cancer Center, Tampa, FL, United States.

B10 Tumor-derived Interleukin-35 promotes pancreatic ductal adenocarcinoma cells extravasation and metastasis via inducing ICAM1 expression. Chongbiao Huang, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.

B11 Development of orthotopically grafted organoid models to study pancreatic cancer progression. Chang-Ill Hwang, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States.

B12 CLPTM1L and GRP78 Interact and Promote Pancreatic Tumor Survival Under ER-Stress and Chemoresistance Through Cell-Surface Translocation and Interaction with PI3K. Michael James, Medical College of Wisconsin, Milwaukee, WI, United States.
B13 Novel treatment strategy for pancreatic cancer by targeting the ‘undruggable’ Ras oncoprotein. Yoshihito Kano, University of Toronto, Toronto, Canada.

B15 Defining functional PDAC-suppressive mechanisms of the acinar differentiation factor PTF1A. Nathan Krah, University of Utah, Salt Lake City, UT, United States.

B16, PR09 Loss of SIRT6 reactivates the RNA-binding protein Lin28b to drive pancreatic cancer. Sita Kugel, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, United States.

B17 BET inhibitors block pancreatic stellate cell collagen production and attenuate fibrosis in vivo. Krishan Kumar, Departments of Medicine and Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.

B18 Molecular cancer testing of KRAS and miR-21 from EUS-guided biopsies of pancreatic tissue: Utility of aspirates vs. cytology. Lucie Benesova, Genomac Research Institute, Prague, Czech Republic.

B19 Kras mutation imparts neoplastic potential on duct cells but not acinar cells in a mouse model of obstructive chronic pancreatitis. Anna Means, Vanderbilt University Medical Center, Nashville, TN, United States.

B20 The necroosome promotes pancreatic oncogenesis via CXCL1 and mincle-induced immune suppression. George Miller, NYU Langone Medical Center, New York, NY, United States.

B22 Invitro and invivo proof of concept for an effective antineoplastic combination of novel anti HIF therapy in pancreatic cancer. M. Nezami, Pacific Medical Center of Hope, Fresno, CA, United States.

B23 Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Katherine Richards, University of Notre Dame, South Bend, IN, United States.

B24 p53 mediates reprogramming of cancer-associated fibroblasts in pancreatic cancer. Maya Ridinger, Salk Institute, San Diego, CA, United States.

B25 Activation of Wnt/β-catenin signaling pathway enhances pancreatic cancer development and the malignant potential via up-regulation of Cyr61/CCN1. Makoto Sano, Nihon University School of Medicine, Tokyo, Japan.

B26 Altered eIF3f subcellular localization and expression in pancreatic ductal adenocarcinomas and its precursor lesions. Jiaqi Shi, University of Michigan, Ann Arbor, MI, United States.

B27 Interdicting the cytokine-mediated paracrine communication between pancreatic cancer and stellate cells as a new treatment approach for pancreatic ductal adenocarcinoma. Yu Shi, Salk Institute for Biological Studies, La Jolla, CA, United States.

B29 The elucidation for functional roles of Metadherin in metastatic cascade of pancreatic cancer. Kensuke Suzuki, Chiba University, Chiba-City, Chiba, Japan.

B30 Prrx1 isoforms regulate pancreatic cancer stem cell functions during pancreatic cancer progression. Shigetsugu Takano, Department of General Surgery, Chiba University, Chiba, Chiba, Japan.

B31 The MUC4 oncomucin mediates resistance of human pancreatic cancer cells to FOLFIRINOX drugs. Isabelle Van Seuningen, Inserm UMR-S 1172/JPARC, Lille, France.

B32 GRP55 antagonists alter tumor microenvironment and inhibit tumor growth in a pancreatic tumor xenograft model. Irving Wainer, Mitchell Woods Pharmaceuticals, Shelton, CT, United States.

B33 Cancer-FOXP3 recruits FOXP3+Treg Cells via CCL5 in pancreatic ductal adenocarcinoma. Xiuchao Wang, Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.

B34 A Novel MIF-driven signaling drives disease aggressiveness by targeting NR3C2 in pancreatic cancer. Shouhui Yang, National Cancer Institute, Bethesda, MD, United States.

B35 Molecular and phenotypic profiling of pancreatic cancer cachexia in novel murine models and patients. Teresa Zimmers, Indiana University School of Medicine, Indianapolis, IN, United States.

B36 Preclinical development of a multitargeting molecule with activity against the cancer stem cell phenotype in pancreatic adenocarcinoma. Taylor Aiken, National Cancer Institute, Bethesda, MD, United States.

B37 Mesothelin-targeted immunotoxin RG7787 (LMB-100) preferentially depletes secreted proteins and short-lived intracellular proteins to augment tumor cell killing by taxanes. Christine Alewine, NIH- National Cancer Institute, Bethesda, MD, United States.

B38 Clinical translation of nuclear export inhibitor in metastatic pancreatic cancer. Asfar Azmi, Karmanos Cancer Institute, Wayne State Institute, Detroit, MI, United States.

B39 Inhibition of cathepsin S protease impedes adapted chronic autophagy of pancreatic ductal adenocarcinoma under acidic pH microenvironment. Wun-Shaing Chang, National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.

B41 The angiotensin receptor blocker telmisartan inhibits the growth of pancreatic ductal adenocarcinoma and improves survival. Jelena Grahovac, Massachusetts General Hospital, Boston, MA, United States.

B42 Multiplexed in vivo small molecule screening identifies the lipase ABHD6 as a pro-metastatic factor in pancreatic cancer. Barbara Grüner, Stanford University, Stanford, CA, United States.

B43 High-throughput drug screening model using 3D cultured human pancreatic ductal adenocarcinoma cells. Rainer Heuchel, Karolinska Institutet, Department of Clinical Intervention and Technology (CLINTEC), Stockholm, Sweden.

B44 Optimization and IND enabling investigations of MVT-2163 (89Zr-DFO-5B1) leading to First-in-Human readiness. Jacob Houghton, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell and patient-derived tumor organoids. Ling Huang, Beth Israel Deaconess Medical Center, Boston, MA, United States.

Tetra-O-methyl nordihydroguaiaretic acid broadly suppresses cancer metabolism and synergistically induces strong anticancer activity in combination with Etoposide, Rapamycin and UCN-01. Kotoko Kimmel, Johns Hopkins University, Baltimore, MD, United States.

Nanoliposomal irinotecan (nal-IRI) is an active treatment and reduces hypoxia as measured through longitudinal imaging using [18F]FAZA-PET in an orthotopic patient-derived model of pancreatic cancer. Stephan Klinz, Merrimack Pharmaceuticals, Inc., Cambridge, MA, United States.

A novel high throughput screening platform identifies statins as inducers of basic Helix-Loop-Helix activity, p21 and growth arrest in pancreatic cancer cell and patient derived xenograft lines. Reyhan Lahmy, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.

The therapeutic effects of bromodomain inhibitors on the tumor microenvironment in pancreatic cancer. Ana Sofia Leal, Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States.

Noninvasive acoustic cavitation transiently enhances tumor perfusion and drug delivery and alters immune response. Andrew Rhim, University of Michigan, Ann Arbor, MI, United States.

Regulation of HIF1α under hypoxia by APE1/Ref-1 impacts CA9 expression: Dual-targeting in patient-derived 3D pancreatic cancer models. Derek Logsdon, Indiana University School of Medicine, Department of Pharmacology and Toxicology, Indianapolis, IN, United States.

Phospho-valproic acid inhibits pancreatic cancer growth in mice: Enhanced efficacy by its formulation in poly-(L)-lactic acid-poly(ethylene glycol) nanoparticles. Gerardo Mackenzie, Stony Brook University, Stony Brook, NY, United States.

The integrin αvβ6 is a promising therapeutic target for treating PDAC. John Marshall, Barts Cancer Institute, QMUL, London, United Kingdom.

PR10 CXCR2 inhibition suppresses metastasis and improves the response to immunotherapy in pancreatic cancer. Jen Morton, Cancer Research UK Beatson Institute, Glasgow, United Kingdom.

Paclitaxel-loaded microparticles promote cancer cell death and reduce gemcitabine resistance in a pancreatic cancer cell line. Maria Munoz-Sagastibelza, SUNY Downstate Medical Center, Brooklyn, NY, United States.

Effects of MEK inhibition alone or in combination with PI3K-mTOR pathway inhibitors in pancreatic ductal adenocarcinoma in vitro and on an innovative ex vivo fresh tumor tissue culture model. Cindy Neuzillet, Department of Oncology and Inserm UMR1149, Beaujon University Hospital, Clichy, France.

Combination therapy with the novel small molecule drug conjugate SW V-49 and gemcitabine is a potent pancreatic cancer therapeutic. Kerri Ohman, Washington University School of Medicine, St. Louis, MO, United States.
B59 Black raspberries inhibit pancreatic carcinogenesis by suppressing Raf/MEK/ERK/STAT3 signaling pathways and promoting apoptosis. Pan Pan, Medical College of Wisconsin, Milwaukee, WI, United States.

B60 Targeting the polyamine addiction of pancreatic cancers: Combination therapies and biomarkers. Otto Phanstiel, University of Central Florida, Orlando, FL, United States.

B61, PR06 A novel β2 adrenergic-nerve growth factor feed forward loop promotes pancreatic cancer. Bernhard Renz, University of Munich, Munich, Germany.

B63 An effective new strategy to control and inhibit the “undruggable” oncogenic K-RAS hyperactivation in human pancreatic cancer. Amy Tang, Eastern Virginia Medical School, Norfolk, VA, United States.

B65 The combination of beta-cyclodextrin & 2-deoxyglucose worked synergistically with TRAIL to induce apoptosis in 90% of Panc-1 cells at 10ng/ml of TRAIL. Ryuji Yamaguchi, Kansai Medical University, Hirakata, Osaka, Japan.

B66 BET inhibition remodels tumor stroma and suppresses progression of human pancreatic cancer. Keisuke Yamamoto, The University of Tokyo, Tokyo, Japan.

B67 Stroma breaking dual targeted theranostic nanoparticles for image-guided and targeted therapy of pancreatic cancer. Lily Yang, Emory University, Atlanta, GA, United States.

B68 Role of CD44 in pancreatic cancer cell plasticity. James Freeman, University of TX Health Sci Ctr, San Antonio, TX, United States.

B69 Tuft cell signaling can induce pancreatic inflammation and promote pancreatic ductal adenocarcinoma. Megan Hoffman, University of Michigan, Ann Arbor, MI, United States.

B70 RSPO2 enhances canonical Wnt signaling to confer stemness-associated traits to susceptible pancreatic cancer cells. Matthias Ilmer, Ludwig-Maximilians-University, Munich, Germany.

B71 Resistance to MEK inhibition in pancreatic cancer is associated with amphiregulin mediated EGFR-STAT3 activation. Nagaraj Nagathihalli, Department of Surgery, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, United States.

B74 The role of GLI2 as a driver of an aggressive subtype of pancreatic cancer. Rushika Perera, University of California, San Francisco, San Francisco, CA, United States.

B75 Targeting the immune-microenvironment with combined inhibition of MEK and STAT3 in a mouse model of pancreatic cancer. Casey Roberts, University of Miami, Miami, FL, United States.
B76 Translating keratin 17 status to stratify clinically relevant pancreatic cancer heterogeneity and survival. Kenneth Shroyer, Stony Brook University, Stony Brook, NY, United States.

B77 CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. Martin Sprick, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany.

B78 RAD51 sensitizes pancreatic cancer cells to AKT inhibition. Surpiya Srinivasan, Department of Surgery, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, United States.

B79 Integrative quantitative analysis of pancreatic ductal adenocarcinoma mRNA, miRNA, and methylation profiles reveals interactions that are dependent on tumor cellularity. Aristeidis Telonis, Thomas Jefferson University, Philadelphia, PA, United States.

B82, PR02 Tumor metabolism and early metabolic response predicts survival of metastatic pancreatic cancer patients treated with FOLFIRINOX chemotherapy. Do-Youn Oh, Seoul National University Hospital, Seoul, Korea, Republic Of.

B83 Targeting TRPV6 oncochannel for the treatment of pancreatic cancer: A phase I trial experience. Dominique Dugourd, MD Anderson Cancer Center, Houston, TX, United States.

B84 Physiologic pancreatic cancer imaging using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Erin Gilbert, Oregon Health & Science University, Portland, OR, United States.

B85 Pathologic complete response following systemic chemotherapy with or without chemoradiotherapy for borderline resectable/unresectable pancreatic adenocarcinoma: Indiana University experience. Neda Hashemi-Sadraei, Indiana University, Indianapolis, IN, United States.

B86 Novel assessment of SPARC expression by hierarchical clustering in pancreatic ductal adenocarcinoma shows distinct prognostic and predictive groups. Steve Kalloger, University Of British Columbia, Vancouver, British Columbia, Canada.

B87 Co-expression of GLUT1 and MCT4 is a poor prognostic marker and predicts response to adjuvant chemotherapy in PDAC. Joanna Karasinska, Pancreas Centre BC, Vancouver, British Columbia, Canada.

B88 Clinical trials targeting APE1/Ref-1 in pancreatic cancer with APX3330. Mark Kelley, Indiana University Simon Cancer Center, Indianapolis, IN, United States.

B89 Neoadjuvant FOLFIRINOX in patients with resectable pancreatic cancer. Safi Shahda, Indiana University School of Medicine, Indianapolis, IN, United States.

B90 PFK-158 is a first-in-human inhibitor of PFKFB3 that selectively suppresses glucose metabolism of cancer cells and inhibits the immunosuppressive Th17 cells and MDSCs in advanced cancer patients. Gilles Tapolsky, Advanced Cancer Therapeutics, Louisville, KY, United States.