A01 Antitumor response by T-cell receptor fusion construct (TRuC)-expressing T cells without costimulation. G. Christian Baldeviano. TCR2 Therapeutics, Cambridge, MA.

A02 HER2-specific chimeric antigen receptor T cells with NKILA knockout improve therapeutic effects towards HER2+ breast cancer. Erwei Song. Sun Yat Sen University, Guangzhou, China.


A05 Regulation of CD40L on chimeric antigen receptor T cells enhances immune function translating to antitumor effects. Michelle Fleury. Obsidian Therapeutics, Cambridge, MA.

A06 Sequential two-receptor priming CAR system to overcome heterogeneous antigen expression. Payal B. Watchmaker, University of California San Francisco, San Francisco, CA.

A07 Super2-expressing CAR T cells generate improved antitumor responses to solid tumors. Rachel A. Brog, Dartmouth College, Hanover, NH.

A08 Rationally designed Glypican-2 (GPC2) CAR T-cells effectively eradicate endogenous site density solid tumors in the absence of toxicity. Sabine Heitzeneder. Stanford Cancer Center, Stanford, CA.


A12 Novel DNA-based scaffold promotes rapid T-cell activation, transduction, and high expansion. Anup Sood. Global Research, Niskayuna, NY.

A13 Molecular characterization for CAR-T cell therapy: A step toward standardization with the nCounter® CAR-T Characterization Panel. Christina M. Bailey. NanoString, Seattle, WA.
A14 Phase I adoptive cellular therapy trial with endogenous CD8+ T cells (ACTolog IMA101) in patients with relapsed and/or refractory solid cancers. Apostolia M. Tsimberidou. The University of Texas MD Anderson Cancer Center, Houston, TX.

A15 Repurposing of fenofibrate to prevent and treat PM-induced pulmonary fibroblast-mediated inflammation: Mechanism involved in SIRT1-SREBP1-PIR/NLRP3 inflammasome axis. Chia-Ping Tien. Genomics Research Center, Academia Sinica, Taipei, Taiwan.


A17 Analysis of the impact of VEGF and cannabidiol treatment on prostate cancer cells. Lesetja Raymond Motadi. North-West University, Mmabatho, Republic of South Africa.

A18 Targeting pancreatic cancer using nonengineered, multiantigen-specific T cells (TACTOPS). Brandon G. Smaglo. Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX.


A21 Adoptive cell therapy using HER2-specific CD4 T cells for HER2-expressing cancers. Krithika N. Kodumudi. H. Lee Moffitt Cancer Center, Tampa, FL.

A22 Conditioning treatment with a CD27 antibody enhances in vivo expansion and antitumor activity of adoptively transferred T cells. Li-Zhen He. Celldex Therapeutics, Inc., Hampton, NJ.

A23 Adapter CAR T-cells (AdCAR-T) allow precise control on effector function, prevent antigen evasion, and enable differential target cell lysis, based on complex antigen expression profiles. Christian M. Seitz. University Hospital Tuebingen, Tuebingen, Germany.

A24 IL-2 limits CAR T-cell efficacy through selective expansion of a differentiated and less functional subset marked by the loss of CD27 expression. Dongrui Wang. City of Hope, Duarte, CA.

A25 convertibleCAR-T cells provide a highly modular universal system for dose control of activity, targeting flexibility, and in vivo CAR maintenance. Kaman Kim. Xyphos Biosciences, South San Francisco, CA.


A28 Pan-cancer expression analyses identify adenylate kinase modulating immune microenvironment and infiltrating T cell functions in lung cancer that can be overcome by metformin treatment to suppress cancer growth and metastasis. Tsung-Ching Lai. GRC, AS, TPE, Taiwan.