A01 Acidic fibroblast growth factor mediates microenvironmental regulation of MYC in pancreatic cancer. Sohinee Bhattacharyya, Oregon Health and Science University, Portland, OR

A02 SM08502, a novel, small-molecule CDC-like kinase (CLK) inhibitor, downregulates the Wnt signaling pathway and demonstrates antitumor activity in pancreatic cancer cell lines and in vivo xenograft models. Carine Bossard, Samumed, LLC, San Diego, CA

A03 All the roads bring to Rome: How acetyl-CoA metabolism supports multistep pancreatic carcinogenesis. Alessandro Carrer, Veneto Institute for Molecular Medicine, Padua, Italy

A04 Intratumoral T-cell distribution in murine and patient pancreatic cancer correlates with tissue heterogeneity and survival. Julienne L. Carstens, The University of Texas MD Anderson Cancer Center, Houston, TX

A05 Chromatin dynamics in vivo reveal a complex cell fate transition and master regulators of the development of pancreatic intraepithelial neoplasia. Rohit Chandwani, 1Weill Cornell Medicine, New York, NY

A06 Elucidation of the extracellular adenosine pathway in metastatic pancreatic cancer. Anna M. Chiarella, Columbia University, New York, NY

A07 Mst1r inhibition with LY2801653 increases survival in mice bearing aggressive pancreatic adenocarcinoma organoid model. Betzaia G. Childers, University of Cincinnati, Cincinnati, OH

A08 Human preadipocytes promote pancreatic cancer cellular growth in a diabetes-specific manner. Lawrence Delrosario, University of Michigan, Ann Arbor, MI

A09 CD4 T cells mediated protumorigenic pathway in pancreatic cancer. Prasenjit Dey, The University of Texas MD Anderson Cancer Center, Houston, TX

A10 Using single-cell RNA sequencing to assess the impact of pancreatic oncogenic Kras on macrophage gene expression in vitro. Katelyn Donahue, University of Michigan, Ann Arbor, MI

A11 Combined Src and EGFR inhibition targets STAT3 to induce stromal remodeling and increase drug delivery to improve survival in a mouse model of pancreatic cancer. Austin R. Dosch, University of Miami Miller School of Medicine, Miami, FL

A12 The establishment, maintenance, and maladaptive role of epigenetic memory in mediating pancreatic tumorigenesis. David J. Falvo, Weill Cornell Medicine, New York, NY

A14 Alternative polyadenylation drives oncogenic gene expression in pancreatic cancer. Michael E. Feigin, Roswell Park Comprehensive Cancer Center, Buffalo, NY

A15 Elucidating the role of p53 in the cellular origins of pancreatic cancer development. Brittany M. Flowers, Stanford University School of Medicine, Stanford, CA
A16 A novel therapeutic approach to inhibit the bidirectional oncogenic crosstalk between pancreatic cancer cells and the surrounding stroma. Bekesho Geleta, The University of Sydney, Sydney, NSW, Australia

A17 Challenging pancreatic ductal adenocarcinoma and its stroma by a combination of chemo and gene therapy: A preclinical study. Giulia Grisendi, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy

A18 Angiotensin receptor blockers normalize the pancreatic ductal adenocarcinoma stroma by reprogramming carcinoma-associated fibroblasts. William W. Ho, Massachusetts General Hospital, Harvard Medical School, Boston, MA

A19 The role of metaplastic tuft cell chemosensory signaling in pancreatic cancer. Megan T. Hoffman, University of Michigan, Ann Arbor, MI

A20 Gemcitabine primes the pancreatic tumor microenvironment for second-line immunotherapy. Daniel R. Principe, University of Illinois College of Medicine, Medical Scientist Training Program, Chicago, IL

A22 Molecular subtypes and resistance programs in pancreatic ductal adenocarcinoma elucidated with single-nucleus RNA-seq. William L. Hwang, 1Broad Institute, Cambridge, MA, 2Koch Institute, Cambridge, MA

A24 Gene expression along the glycolysis-cholesterol synthesis axis and outcome in pancreatic cancer. Joanna M. Karasinska, Pancreas Centre BC, Vancouver, BC, Canada

A25 Using biomaterial scaffolds to study the genesis of the immunosuppressive premetastatic niche in pancreatic cancer. Samantha Kemp, University of Michigan, Ann Arbor, MI

A27 Deep learning for analysis of tumor-lymphocyte interactions in pancreatic ductal adenocarcinoma. Soma Kobayashi, Stony Brook University, Stony Brook, NY

A28 Investigation of tumor-cell-intrinsic factors regulating immune infiltration and response to immunotherapy in pancreatic cancer. Jinyang Li, University of Pennsylvania, Philadelphia, PA

A29 Bicompartmental regulation of disease-related gene networks by histone deacetylase inhibition curbs pancreatic cancer progression. Gaoyang Liang, Salk Institute for Biological Studies, La Jolla, CA

A30 Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer. Matteo Ligorio, Massachusetts General Hospital, Boston, MA

A31 Investigating the effect of myeloid Arg1 deletion on tumor growth and CD8+ T-cell infiltration and activation in pancreatic cancer. Rosa E. Menjivar, University of Michigan, Ann Arbor, MI
A32 Adipose-derived mesenchymal stem cell has the differentiation/reprogramming capacity towards two distinct cancer-associated fibroblasts. Yoshihiro Miyazaki, Department of Surgery, University of Tsukuba, Tsukuba, Japan

A33 Single-cell profiling reveals subclonal vulnerabilities to therapy in patient-derived 2D and organoid models. Maria E. Monberg, Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX

A34 Suppression of dystroglycan function is a hallmark of acinar-to-ductal metaplasia and favors the development of neoplasias and PDAC. John Muschler, Oregon Health and Science University, Portland, OR

A35 Microenvironmental adaptations drive obesity-associated pancreatic cancer. Mandar Deepak Muzumdar, Yale Cancer Biology Institute, Yale University School of Medicine, New Haven, CT

A36 Macrophage metabolism inhibits pancreatic cancer therapy. Christopher J. Halbrook, University of Michigan, Ann Arbor, MI

A37 Mapping super-enhancer signatures in pancreatic ductal adenocarcinoma, cancer-associated fibroblasts and their targeting by epigenetic inhibitors. Pawan Noel, Translational Genomics Research Institute (TGen), Phoenix, AZ

A38 Defining heterogeneity of molecular subtypes in human PDAC with scRNA-Seq. Ki Oh, Stony Brook University, Stony Brook, NY


A40 Genomic characterization of locally advanced pancreatic adenocarcinoma. Sarah L. Picardo, Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada

A41 Cancer-associated fibroblast (CAF) specific biomarkers in pancreatic ductal adenocarcinoma (PDAC): Transcriptomic and molecular insight. Jayarani F. Putri, Stem Cell Biotechnology Research Group, Industrial Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan

A42 Single-cell RNA-seq analysis of human pancreatic ductal adenocarcinoma identifies a novel cell type expressing the intestinal stem cell marker OLFM4. Manisha Rao, Dept. of Pathology, Stony Brook University Cancer Center, Stony Brook, NY

A43 Spatial organization of pancreatic ductal adenocarcinoma (PDAC)–associated immune cells from the Adjuvant Pancreatic Adenocarcinoma Clinical Trial (APACT) study. David J. Reiss, Celgene Corporation, Seattle, WA

A44 The obesity and pancreatic cancer connection: Crosstalk between adipose, tumor, and stroma. Roopali Roy, Boston Children’s Hospital and Harvard Medical School, Boston, MA
A45 Loss of Adar1 in pancreatic acinar cells leads to cell apoptosis and inflammation. Dhwani N. Rupani, The University of Texas MD Anderson Cancer Center, Houston, TX

A46 Senescence induction triggers vascular remodeling and new vulnerabilities to chemo- and immunotherapy in pancreas cancer. Marcus Ruscetti, Memorial Sloan Kettering Cancer Center, New York, NY

A48 Genetic ablation of microRNA-21 profoundly remodels stroma and shortens survival of K-Ras-driven pancreatic cancer mouse models. Lorenzo Sempere, Michigan State University, East Lansing, MI

A49 LIF-mediated crosstalk between pancreatic stellate and cancer cells and its translational application. Yu Shi, Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA

A50 IMPACT inhibits metastatic outgrowth in pancreatic cancer by restraining GCN1-ATF4 signaling. Surajit Sinha, National Cancer Institute, Bethesda, MD

A51 Using single-cell gene expression profiles to determine the cellular landscape of pancreatic ductal adenocarcinoma. Veerin R. Sirihorachai, University of Michigan, Ann Arbor, MI

A52 Modulation of Hedgehog signaling alters immune infiltration in pancreatic cancer. Nina Steele, University of Michigan, Ann Arbor, MI

A53 Mefflin-positive cancer-associated fibroblasts inhibit pancreatic carcinogenesis. Masahide Takahashi, Nagoya University Graduate School of Medicine, Nagoya, Japan.

A54 Oncogenic Kras modulates pancreas plasticity and the tumor microenvironment. Ashley Velez-Delgado, University of Michigan, Ann Arbor, MI

A55 Pancreatic stellate cells promote pancreatic cancer invasion and metastasis by secretion of soluble factors and through contact-mediated mechanisms. Michael B. Ware, Emory University, Atlanta, GA

A56 A novel deaminase independent function of APOBEC3A catalyzes widespread chromosomal instability to drive an aggressive metastatic phenotype in pancreatic cancer. Sonja Maria Woermann, The University of Texas MD Anderson Cancer Center, Houston, TX

A58 Notch signaling is a key regulator for immune-suppressive function of tumor-associated macrophages in pancreatic adenocarcinoma. Wei Yan, University of Michigan, Ann Arbor, MI

A59 CRISPR screen identifies global regulation of H3K36me2 as an epigenomic mechanism underlying epithelial plasticity in pancreatic ductal adenocarcinoma. Salina Yuan, University of Pennsylvania, Philadelphia, PA

A60 Integrated proteogenomic characterization of pancreatic ductal adenocarcinoma. Liwei Cao, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
A61 Tandem duplicator phenotype: A potentially targetable genomic subgroup in pancreas cancer. Amy X. Zhang, PanCuRx Translational Research Initiative, Ontario Institute of Cancer Research, Toronto, ON, Canada

A62 Regulatory T-cell depletion promotes oncogenic Kras-driven pancreatic carcinogenesis. Yaqing Zhang, University of Michigan, Ann Arbor, MI