Poster Session B
Friday, May 10
4:30-6:30 pm

B01 Understanding the LATS1 pro-apoptotic signalling network in melanoma. Lucia Garcia-Gutierrez, Systems Biology Ireland, University College Dublin, Dublin, Ireland.

B02 Elevated YAP expression associates with EMT, stem-ness and angiogenic properties of TNBC cell lines and recurrence in TNBC patients. Madhura Kulkarni, Center for Translational Cancer Research, IISER Pune and PCCM, Pune, MH, India.

B03 Differential YAP expression in glioma cells induces cell competition and promotes tumorigenesis. Zhijun Liu, Duke University, Durham, NC.

B04 Hepatic cholesterol upregulates TAZ in nonalcoholic steatohepatitis. Xiaobo Wang, Columbia University, New York, NY.

B05 Investigating the role of STK3/4 kinases in cancer. Nicole Bata, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA.

B06 Development of selective LATS1/LATS2 inhibitors for the pharmacological modulation of the hippo signaling pathway. Michele Ceribelli, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD.

B07 NUAK2 inhibition for prostate cancer. Weiwei Fu, Duke University Medical Center, Durham, NC.

B08 Therapeutic inhibition of YAP1 expression by next generation antisense oligonucleotides leads to antitumor activity in head and neck squamous cell carcinoma with YAP1 activation. Youngsoo Kim, Ionis Pharmaceuticals Inc., Carlsbad, CA.

B09 Selective depletion of YAP1 with next generation (constrained ethyl-cEt) antisense oligonucleotides results in tumor regression in mouse models of HCC with YAP1 activation. Youngsoo Kim, Ionis Pharmaceuticals Inc., Carlsbad, CA.

B10 Evaluating YAP and TAZ as therapeutic targets for treating Malignant Mesothelioma with Hippo pathway disruptions. Aishwarya Kulkarni, The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.

B11 Computational insights on the druggability of TEAD YAP-binding domain. Chenglong Li, University of Florida, Gainesville, Florida.

B12 High-throughput screening platform to discover TEAD modulators. Sungho Moon, Yonsei University, Seoul, Republic of Korea.
Cancer metabolism sensitizes metformin treatment by targeting the Hippo-YAP/TAZ pathway. Jae Hyung Park, Yonsei University, Seoul, Republic of Korea.

Discovery of YAP-TEAD Protein-Protein Interaction inhibitors (PPI) for treating Malignant Pleural Mesothelioma (MPM). Anne Soudé, Inventiva, Daix, France.

Targeting the Hippo-YAP pathway with small molecule compounds. Tracy Tang, Vivace Therapeutics, San Mateo, CA.

Silence of Hippo pathway induces pro-tumoral immunity: New therapeutic target of glioblastomas. Eui Hyun Kim, Department of Neurosurgery, Severance Hospital, Brain Tumor Center, Yonsei University College of Medicine, Seoul, Seoul, South Korea.

Hyperactivating the Hippo pathway effector TAZ distorts the immune microenvironment in promoting the mesenchymal transformation in glioblastoma. Wei Li, Penn State College of Medicine, Hershey, PA.

YAP1 and TAZ mediate BET inhibitor-dependent immune regulation in NSCLC. Francesca Reggiani, AUSL-IRCCS, Reggio Emilia, Italy.

Neurofibromin 2 regulates metabolism in the heart. Dominic Del Re, Rutgers New Jersey Medical School, Newark, NJ.

STK3/4-mediated phosphorylation of LC3B regulates directional intracellular transport of autophagic vesicles. Jose L. Nieto Torres, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA.

Proteomic profiling of tandem affinity purified MAP4K family kinases. Gayoung Seo, University of California, Irvine, California.

The origin of the hippo pathway. Yuxuan Chen, University of California, Irvine, CA.

A novel model of neurofibroma that deciphers its developmental origin and susceptibility to modification by the hippo pathway. Zhiguo Chen, University of Texas Southwestern Medical Center, Dallas, TX.

Identification of YAP modulators using genome-wide gain-of-function screening. Paul Cramer, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany.

An actionable AXL-ABL2-TAZ signaling axis promotes lung adenocarcinoma metastasis to the brain. Jacob Hoj, Duke University, Durham, North Carolina.

A tumor specific molecular network promotes tumor growth by enforcing a JNK-YKI feed forward loop. Madhuri Kango-Singh, Department of Biology, University of Dayton, Dayton, OH.

IDENTIFICATION OF UVEAL MELANOMA DISSEMINATED CANCER CELL DORMANCY MECHANISMS. Melisa Lopez-Anton, Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY.

Cep55 regulates YAP/TAZ expression and localization during cell cycle progression. Pin Ouyang, Chang Gung University, Taoyuan, Taoyuan, Taiwan.

B30  Joint control of epidermal cell fate by Yorkie and Bonus. Alexey Veraksa, UMass Boston, Boston, MA.

B31  YAP1-induced Cervical Carcinogenesis Challenges the HPV Dogma. Cheng Wang, Massachusetts General Hospital / Harvard Medical School, Boston, MA.

B32  High-throughput chemical screening reveals YAP-mediated alterations in drug sensitivities. Andrew Bondesson, University of Washington, Seattle, WA.

B33  Genome Scale CRISPR/cas9 screening identifies Hippo pathway as key determinant for susceptibility to BET inhibitors in lung cancer. Giulia Gobbi, AUSL-IRCCS, Reggio Emilia, Italy.

B34, PR11  Active YAP as a functional marker of drug-tolerant persister cells in EGFR-mutant and ALK fusion positive NSCLC. Franziska Haderk, UCSF, San Francisco, CA.


B36  Therapy-induced YAP hyperactivation is a mechanism driving the evolution of residual disease and resistance to targeted cancer therapy. Aubhishek Zaman, UCSF, San Francisco, CA.

B37  Genomic view of YAP1 dependent transcription. Stefano Campaner, Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy.

B38, PR08  Systematic pan-cancer analyses of Hippo Pathway deregulation in cancer. Matthew Chang, Genentech, South San Francisco, CA.

B39  The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Michelangelo Cordenonsi, University of Padova, Padova, Italy.

B40, PR05  Genome-wide screening identifies novel YAP modulators. Dana Elster, Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Jena, Thüringen, Germany.

B41  Role of AIB1 in YAP-TEAD Signaling in the Progression of Early Stage Breast Cancer. Max Kushner, Georgetown University, Washington, DC.

B42  YAP1/Hippo pathway and SWI/SNF as critical players in squamous cancers and normal development. Srinivas Vinod Saladi, MEEI/MGH/HMS, Boston, MA.

B43  Division of labor between YAP and TAZ in lung cancer. Michal Shreberk-Shaked, Weizmann Institute of Science, Rehovot, Israel.

B44  The TAZ-CAMTA1 and YAP-TFE3 fusion proteins transform cells by binding to subunits of the histone acetyltransferase Ada2a-containing complex (ATAC). Munir Tanas, Department of Pathology, University of Iowa, Iowa City, IA.