Poster Session A
Friday, Sept. 28, 2018
12:30–3 p.m.

A01 Dichotomous roles for RNA binding protein IMP1 in colon cancer metastasis. Sarah Andres, University of Pennsylvania, Philadelphia, PA, USA.

A02 Patient-derived xenografts and matched cell lines identify pharmacogenomic vulnerabilities in colorectal cancer. Sabrina Arena, University of Turin, Candiolo Cancer Institute-FPO, Candiolo, Turin, Italy.

A03 Dietary folic acid modulates the colonic epigenome and promotes colitis-associated tumorigenesis. Wen-Chi Chang, Fox Chase Cancer Center, Philadelphia, PA, USA.

A04 Hypoxia-induced expression of intestinal stem cell markers in patient-derived human colorectal cancer organoids through alterations in 5-hydroxymethylcytosine. Colin Flinders, University of Southern California, Los Angeles, CA, USA.

A05 STAT2 contributes to the motility and metastasis of colorectal cancer when p53 is inactivated. Ana Gamero, Temple University, Philadelphia, PA, USA.

A06; PR06 Epithelial Notch1 drives metastasis by controlling neutrophil chemotaxis in novel late stage colorectal cancer genetically engineered mouse models. Rene Jackstadt, Cancer Research UK Beatson Institute, Glasgow, United Kingdom.

A07 Cross-stage changes in gene mutation profiles in colorectal cancer. Sanjay Jain, Morehouse School of Medicine, Atlanta, GA, USA.

A08 Dissecting the role of histone demethylases in the gastrointestinal tract at homeostasis and during regeneration. Hannah Kolev, University of Pennsylvania, Philadelphia, PA, USA.

A09 A FOXA1-regulated putative long noncoding RNA encodes a highly conserved tumor suppressor micropeptide in colorectal cancer cells. Ashish Lal, Center for Cancer Research - National Cancer Institute, Bethesda, MD, USA.

A10; PR09 Intestinal cancer initiation using ENU mutagenesis. Filipe Lourenco, CRUK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.

A11 Differential regulation of let-7 microRNAs by LIN28B isoforms in colorectal cancer. Rei Mizuno, University of Pennsylvania, Philadelphia, PA, USA.

A12 SMAD4 rewires WNT signaling and suppresses BRAF-driven serrated tumorigenesis. Kevin Tong, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.

A13 The Role of the HBP1 Gene and Wnt Signaling in a New Pre-clinical Model of Ulcerative Colitis and Colitis-Associated Colorectal Cancer. Amy Yee, Tufts University School of Medicine, Boston, MA, USA.
A14 HopX identifies a colonic stem cell population that contributes to colonic regeneration but not colorectal tumors. Samuel Asfaha, Western University, London, Ontario, Canada.

A15; PR01 Real time in vivo imaging of the intestinal epithelium reveals that stem cell and crypt dynamics affect mutation accumulation. Lotte Bruens, Netherlands Cancer Institute, Amsterdam, The Netherlands.

A16 Impact of the c-MYC internal ribosome entry site on intestinal regeneration and colorectal tumorigenesis. Sarah Denk, University of Wuerzburg, Wuerzburg, Germany.

A17; PR07 Defining sensitivity and resistance to WNT inhibitors using CRISPR editing in intestinal organoids and in vivo models. Lukas Dow, Weill Cornell Medicine, New York, NY, USA.

A18 The bile acid receptor FXR controls intestinal stem cell proliferation. Ting Fu, Salk Institute, La Jolla, CA, USA.

A19; PR05 Cancer cell plasticity drives metastasis in colorectal cancer. Arianna Fumagalli, NKI-AvL, Oncode Institute, Amsterdam, The Netherlands.

A20; PR04 Injury-induced Paneth cell plasticity. Nan Gao, Rutgers University, Newark, NJ, USA.

A21 Protective role of the aryl hydrocarbon receptor in regulating colonic stem and progenitor cell homeostasis. Huajun Han, Texas A&M University, College Station, TX, USA.

A22 Targeting Oncogenic Intestinal Stem Cells as a Chemopreventive Strategy. Michael Hodder, CRUK Beatson Institute, Glasgow, United Kingdom.

A23 Colorectal cancer develops inherent radiosensitivity. Kuo-Shun Hsu, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

A24 Modeling radiation injury and countermeasure drug responses in a primary human Intestine Chip. Sasan Jalili-Firoozinezhad, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.

A25 Azoxymethane administration in mice Increases Lgr5+ stem cell signature in organoids. Stefan Klingler, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

A26; PR12 Ex vivo pharmacogenomic heterogeneity of colorectal liver metastases. Kushtrim Kryeziu, Institute for Cancer Research and K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.
A27; PR10 PLAGL2 is a Let-7 target that drives intestinal stem cell fate and transformation. Blair Madison, Washington University in St. Louis, Saint Louis, MO, USA.

A28 TNKS2 promotes WNT/Beta-catenins signaling through PARylation of NKD2 in colon cancer cells. Nicholas Markham, Vanderbilt University, Nashville, TN, USA.

A29 NDRG4, an enteric neuronal-specific protein, contributes to colorectal cancer progression via regulation of vesicle trafficking. Veerle Melotte, MUMC, Maastricht, The Netherlands.

A30 Novel deubiquitinases regulating β-Catenin stability in colorectal cancer. Michaela Reißland, University Würzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany.

A31; PR03 HMGA1 is Up-Regulated by Procarcinogenic Bacteria within the Microbiome to Expand the Colon Stem Cell Pool and Drive Tumorigenesis. Linda Resar, Johns Hopkins University School of Medine, Baltimore, MD, USA.

A32 Oxidative damage-induced epigenetic changes in intestinal stem cells and tumorigenesis. Sudha Savant, Indiana University, Bloomington, IN, USA.

A33 Metabolic control of stemness and tumorigenesis in the intestine. Carlos Sebastian, Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Torino, Italy.

A34 Role of inflammation in Dclk1+ cell-derived colon cancer. Alice Shin, Western University, London, Ontario, Canada.

A35 Highly efficient derivation and expansion of small intestinal organoids from human pluripotent stem cells in vitro. Salvatore Simmini, STEMCELL Technologies UK Ltd., Cambridge, Cambridgeshire, United Kingdom.

A36 An endoluminal rectal cancer model establishes a platform to study individual tumor biology and responses to chemotherapy and irradiation. J. Joshua Smith, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

A37 SATB2/β-catenin/TCF-LEF pathway induces cellular transformation by generating cancer stem cells in colorectal cancer. Rakel Srivastava, Louisiana State University Health Sciences Center, New Orleans, LA, USA.

A38 Role of autophagy in intestinal stem cell homeostasis. Coralie Trentesaux, Institut Cochin, Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France.