A01 Integrative analysis of functional genomics and copy number variation nominates potential therapeutic intervention targets for melanoma. Banu Eskiocak, UT Southwestern Medical Center, Dallas, TX, United States.

A02 An epigenetic strategy for inhibition of MITF function in malignant melanoma. Yariv Houvras, Weill Cornell Medical College, New York, NY, United States.

A03 Mechanism and therapeutic implications of preferential codon mutation in N-RAS-driven melanoma. Meriam Waqas, The Ohio State University, Columbus, OH, United States.

A04 Aging microenvironment modulates melanoma invasion and metastasis. Amanpreet Kaur, The Wistar Institute, Philadelphia, PA, United States.

A05 Identification of RASA1 as a novel melanoma tumor suppressor gene. Minjung Kim, Moffitt Cancer Center, Tampa, FL, United States.

A06 Integrated epigenomic profiling reveals widespread demethylation in melanoma and reveals CSF-1 Receptor as an aberrant regulator of malignant growth and invasion. Orsolya Giricz, Albert Einstein College of Medicine, Bronx, NY, United States.

A07 Specific inhibition of hTERT expression in melanoma by targeting common promoter mutations which cause quadruplex DNA instability. Donald Miller, University of Louisville, Louisville, KY, United States.

A08 CADM1 is a TWIST1 regulated suppressor of melanoma invasion. Edward Hartsough, Thomas Jefferson University, Philadelphia, PA, United States.

A09 ErbB3/ErbB2 complexes as a therapeutic target in a subset of wild-type BRAF/NRAS cutaneous melanomas. Claudia Capparelli, Thomas Jefferson University, Philadelphia, PA, United States.

A10 PIM kinases as novel therapeutic targets against advanced melanoma. Batool Shannan, Wistar Institute, Philadelphia, PA, United States.

A11 Cross-talk between klotho and wnt5A drives age-related melanoma progression. Reeti Behera, The Wistar Institute, Philadelphia, PA, United States.

A12 Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma. Chiara Vardabasso, Icahn School of Medicine at Mount Sinai, New York, NY, United States.

A14 Hyperactivation of RSK1 is a hallmark of metastatic nodular melanoma. Amel Salhi, New York University School of Medicine, New York, NY, United States.

A15 mGlu1 Receptors and downstream signal transduction proteins as therapeutic targets for the treatment of metastatic melanoma. Tara Gelb, Georgetown University, Washington, DC, United States.

A16 The tumor suppressor FBXW7, through NOTCH1 activation, uncovers a new therapeutic paradigm for melanoma. Iraz Aydin, Icahn School of Medicine at Mount Sinai, New York, NY, United States.

A17 Assessing the similarity and dissimilarity between primary and metastatic melanoma using gene expression data. Leoping Li, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, United States.

A18 BAP1 depletion negatively affects cutaneous melanoma cell growth. Raj Kumar, MGH, Boston, MA, United States.

A19 Expression of BRAFV600E in melanocytes induces Schwannian differentiation in vivo. Jodie Pietruska, Tufts University, Boston, MA, United States.

A20 Deregulation of cell cycle and apoptotic mechanisms in UVB-irradiated p16-mutant inducible melanoma cell lines. Ishita Gupta, Sultan Qaboos University, Al Khoud, Muscat, Oman.

A21 Functional differences among melanoma cells separated according to pigment content. Clare Fedele, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia.

A22 Understanding the role of glycosylation in melanoma metastasis. Praveen Agrawal, New York University Medical Center, New York, NY, United States.

A23 Epigenetic Cis-regulatory interactions in HIF1a-activated melanocytes. Stacie Loftus, National Human Genome Research Institute, NIH, Bethesda, MD, United States.

A25 WWOX phosphorylation at Ser14 enhances melanoma docking and growth in the lung and liver in mice. Nan-Shan Chang, National Cheng Kung University, Tainan, Taiwan.

A26 Protein phosphatase 4 (PP4) as a potential therapeutic target gene for BRAF wild type melanoma. Richard Essner, UCLA/Cedars-Sinai, Los Angeles, CA, United States.

A27 Analyses of the level of liver borne growth factors, IGF-1 and HGF in metastatic and non-metastatic uveal melanoma patient serum: correlation with outcome. Chandrani Chattopadhyay, UT MD Anderson Cancer Center, Houston, TX, United States.

A29 Characterization of preclinical melanoma models to predict response to therapy. Antoneicka Harris, Mayo Clinic, Jacksonville, FL, United States.

A30 Small molecule kinase inhibitor mediated modulation of immunotherapy in melanoma. Marc Wallack, New York Medical College, Valhalla, NY, United States.

A31 Association between TERT promoter mutations and BRAF/NRAS mutations in patients with primary and metastatic melanoma tumors. David Polsky, New York University Langone Medical Center, New York, NY, United States.

A32 A role for elevated leptin, independent of obesity, in the progression of melanoma. Junna Oba, UT MD Anderson Cancer Center, Houston, TX, United States.

A33 Loss of tumor suppressors KAI1 and p27 identifies a unique subgroup of primary melanoma patients with poor survival. Yabin Cheng, University of British Columbia, Vancouver, BC, Canada.

A34 MC1R signaling reduces UV mutagenesis by ATR-mediated recruitment of XPA to photolesions. John D'Orazio, University of Kentucky, Lexington, KY, United States.

A35 Integration of melanoma genotyping in clinical care. Amel Salhi, New York University School of Medicine, New York, NY, United States.

A36 An automated next generation sequencing (NGS) workflow for hospital pathology labs. Christopher Celone, Vela Research USA, Fairfield, NJ, United States.

A37 The signet ring cell melanoma - rare morphological variant of melanoma: Case report. Sinisa Maksimovic, Public health instiutuion Sveti Vracevi, Bijeljina, Bosnia And Herzegovina.
B01 CD40L- and IFNγ-mediated signaling is required for BRAF inhibitor-mediated antitumor immunity. Susan Kaech, Yale University, New Haven, CT, United States.

B02 GPR56 inhibits melanoma growth and metastasis via removing TG2 in extracellular matrix. Lei Xu, University of Rochester, Rochester, NY, United States.

B03 Molecular profiling of immune activation associated with melanoma regression induced by diphencyprone. Nicholas Gulati, The Rockefeller University, New York, NY, United States.

B04 Targeting GPNMB to overcome B-Raf/Mek inhibitor resistance and immune evasion in melanoma. April Rose, McGill University, Montreal, QC, Canada.

B05 Targeting BRAF and CDK4 in BRAF mutant melanoma induces sustained tumor regression. Karen Sheppard, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.

B06 Combination therapy with anti-CTLA4 and anti-PD1 leads to distinct immunologic changes in-vivo. Kavita Dhodapkar, Yale University, New Haven, CT, United States.

B07 Targeting an MT1-MMP/MMP2 axis in melanoma by a novel MT1-MMP/MMP2 inhibitor. Barbara Bedogni, Case Western Reserve University, Cleveland, OH, United States.

B08 Perturbation biology network models predict c-Myc as an effective co-target in RAF-inhibitor resistant melanoma. Anil Korkut, Computational Biology Center, MSKCC, New York, NY, United States.

B09 Phosphorylation of BRAF by AMPK impairs BRAF-KSR1 association and cell proliferation. Che-Hung Shen, CBRC, MGH, Harvard University, Boston, MA, United States.

B10 The combination of cardiac glycosides with MAPK pathway inhibitors has a synthetic lethal effect on melanoma cells by disrupting mitochondrial function. Ugur Eskiocak, Children’s Research Institute at UTSW Medical Center, Dallas, TX, United States.

B11 Manipulating senescence to combat melanoma initiation and progression. Jeff Pawlikowski, Vanderbilt University School of Medicine, Nashville, TN, United States.

B12 Synergistic anticancer activity of Aurora A kinase and MDM2 antagonists in melanoma. Ann Richmond, VA Medical Center, Nashville, TN, United States.

B13 A phase 2, randomized, open-label trial assessing efficacy and safety of talimogene laherparepvec (T-VEC) neoadjuvant treatment (tx) plus surgery vs surgery for resectable Stage IIIIB-IVM1a melanoma. Robert Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States.
B14 A novel strategy for the treatment of melanoma. Mai Xu, Washington University School of Medicine, St. Louis, MO, United States.

B15 Combination chemotherapy in melanoma using EZH2 inhibitor. Deepanwita Sengupta, UAMS, Little Rock, AR, United States.

B16 NEMO: A phase 3 trial of binimetinib (MEK162) versus dacarbazine in patients with advanced NRAS-mutant melanoma who are untreated or have progressed on or after immunotherapy. Georgina Long, Melanoma Institute Australia and University of Sydney, Sydney, Australia.

B17 A high-throughput screening process for the discovery of melanoma chemotherapeutics targeted at the ErbB4 receptor tyrosine kinase. Richard Cullum, Auburn University, Auburn, AL, United States.

B18 Non-thermal plasma, tirapazamine, and gap junctions: A novel approach to melanoma therapy through ROS induction. Shoshanna Zucker, D'Youville College School of Pharmacy, Buffalo, NY, United States.

B19 Discovery of novel tubulin Inhibitor ABI-274 whose synergistic combination with vemurafenib overcome acquired vemurafenib resistance in BRAF mutated Melanoma. Wei Li, University of Tennessee Health Science Center, Memphis, TN, United States.

B20 Design, Synthesis and SAR Studies of Novel Survivin Inhibitors with Potent Antiproliferative Properties. Wei Li, University of Tennessee Health Science Center, Memphis, TN, United States.

B21 Induction of apoptosis by resveratrol in human uveal melanoma cells. Sandeep Goswami, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.

B22 CD8+ T-cell distribution and immunomodulator expression in BRAF-mutant melanoma affect the response to BRAF inhibitor and chemotherapy. Matthew Wongchenko, Genentech, Inc., South San Francisco, CA, United States.

B23 Autoimmune hypophysitis is a marker of favorable outcome during treatment of melanoma with ipilimumab. Jennifer Eatrides, University of South Florida, Tampa, FL, United States.

B26 Receptor tyrosine kinase signaling mediates resistance in NRAS mutant melanoma. Sheri Holmen, University of Utah, Salt Lake City, UT, United States.

B27 Wnt5A-expressing melanoma cells show classical markers of senescence following radiation and therapeutic stress, but retain the ability to metastasize and proliferate at distant sites. Marie Webster, The Wistar Institute, Philadelphia, PA, United States.

B28 In vivo ERK1/2 pathway reporting during acquired resistance to combined RAF/MEK inhibition. Ileine Sanchez, Thomas Jefferson University, Philadelphia, PA, United States.

B30 The role of eIF4E in response and acquired resistance to vemurafenib in melanoma. Yao Zhan, Experimental Medicine, McGill University, Montreal, QC, Canada.

B31 Comparative cost effectiveness of sequencing 34 cancer–associated genes as an aid for treatment selection in metastatic melanoma patients. Yonghong Li, Quest Diagnostics, Alameda, CA, United States.

B32 Responses of direct in vivo melanoma xenograft cells to targeted therapeutics. Joel Basken, University of Colorado-Boulder, Boulder, CO, United States.

B33 PKC resistance in uveal melanoma is mediated by activation of AKT and reversed by BYL719, the PI3Kα inhibitor. Elgilda Musi, Columbia University Medical Center, New York, NY, United States.

B34 Sensitization of TRAIL-resistant malignant melanomas by ellagic acid. Katherine Turner, Department of Chemistry, Cleveland State University, Cleveland, OH, United States.

B35 Vinyl sulfone analogues of lysophosphatidylcholine irreversibly inhibit autotaxin and prevent angiogenesis in melanoma. Mandi Murph, University of Georgia, Athens, GA, United States.

B36 The effects of dasatinib in KIT L579P and NRAS Q61K mutant canine melanoma cells. Lu-Ping Lu, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.

B37 Interferon-beta gene transfer to human melanoma cell lines using a specialized adenoviral vector induces high levels of cell death. Taynah David, Viral Vector Laboratory, Center for Translational Investigation in Oncology, ICESP, São Paulo, Brazil.

B38 Melanoma patient-derived xenografts accurately models the disease and develop fast enough to guide treatment decisions. Jonas Nilsson, University of Gothenburg, Gothenburg, Sweden.

B39 Exome sequencing in primary melanoma identifies novel drivers of melanoma progression. Barbara Stecca, Istituto Toscano Tumori, Florence, Italy.