A01 Single nucleotide polymorphism in the microRNA-199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes. Jihui Hao, Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.

A02 Assessment of germline cancer predisposition genes in 392 unselected pancreatic cancer patients. Skye McKay, Garvan Institute of Medical Research, Sydney, NSW, Australia.

A03 Microbiomes in human pancreatic cancer. Dominique Michaud, Tufts University, Boston, MA, United States.


A05 Proteomic analysis of exosome content changes induced by gemcitabine in pancreatic cancer stromal cells. Wei Huang, University of Notre Dame, Notre Dame, IN, United States.


A07 Identification of endocrine/metabolic biomarkers associated to early PDC in a transgenic mouse model. Valentina Pasquale, Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy.

A08 Prediction of histologic grade of precancerous cystic lesions using picodroplet PCR-enabled targeted sequencing. Andrew Rhim, University of Michigan, Ann Arbor, MI, United States.


A10 Biomarker independant microfluidic Labyrinth for the high throughput enrichment and characterization of circulating tumor cells in pancreatic cancer. Lianette Rivera-Baez, University of Michigan, Ann Arbor, MI, United States.


A12 Analysis of circulating epithelial and EMT-like CTCs in pancreatic cancer using a microfluidic CTC carpet device. Mina Zeinali, University of Michigan, Ann Arbor, MI, United States.

A13, PR05 Genome-scale CRISPR-Cas9 screening to identify essential genes and pathways in pancreatic cancer. Andrew Aguirre, Dana-Farber Cancer Institute, Boston, MA, United States.
A14 Engineering pancreatic cancer through molecular and cellular reconstruction. Naoki Akanuma, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.


A16 Investigating Brd4 action in pancreatic cancer. Direna Alonso-Curbelo, Memorial Sloan-Kettering Cancer Center, NY, United States.

A17, PR03 Mutant p53 promotes adenocarcinoma in pancreatic ductal cells. Jennifer Bailey, The University of Texas Health Science Center at Houston, Houston, TX, United States.

A18 The integrin αvβ6 regulates PDAC cell growth and stromal cell behaviour. John Marshall, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom.

A19 Fundamental significance of specific KRAS mutant types for prognosis of unresectable pancreatic cancer patients. Lucie Benesova, Genomac research institute, Prague, Czech Republic.

A20 Detection and quantification of ctDNA KRAS mutations from patients with unresectable pancreatic cancer. Fernando Blanco, Trovagene, Inc, San Diego, CA, United States.

A21 Chemokine directed migration of activated stellate cells in pancreatic ductal adenocarcinoma. Kathleen Boyle, Medical College of Wisconsin, Milwaukee, WI, United States.

A22 Targeting S100p sensitizes pancreatic cancer cells towards gemcitabine. Yangchao Chen, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.


A24 Role of IL-1 signaling in regulating the KRasG12D-PanIN microenvironment: implications for PanIN establishment and progression. Shipra Das, NYU Langone Medical Center, New York, NY, United States.

A25 Pancreatic cancer cells scavenge complex lipids from stroma in the hypoxic tumor microenvironment. Petrus de Jong, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.

A26 Functional optical probes for dynamic mapping of the chemical and biophysical tumor microenvironment. Christopher DuFort, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.


A28 Differentially expressed microRNA profiles in pancreatic ductal and ampullary adenocarcinomas. Tainara Felix, Faculty of Medicine, UNESP, Sao Paulo State University, Botucatu, SP, Brazil.

A29 Involvement of JAK-STAT signaling in human pancreatic adenocarcinoma cell lines and suitability for targeted therapy. Jesse Fest, Erasmus Medical Center, Rotterdam, Netherlands.

A30 Chronic inflammation induces severe stromal damage and early pancreatic tumors in mice with activated Akt1 and KRas. Sarah Gitto, University of Central Florida, Orlando, FL, United States.
A31 Cell autonomous and nonautonomous regulation of stress granules by mutant KRas enhances tumor drug resistance in PDAC. Elda Grabocka, NYU Langone Medical Center, New York, NY, United States.

A32 GFAT: The crossroads of glucose and glutamine metabolism in pancreatic cancer. Christopher Halbrook, University of Michigan, Ann Arbor, MI, United States.

A33 The ETS-Transcription Factor ETV1 Regulates Stromal Expansion and Metastasis in Pancreatic Cancer. Steffen Heeg, Department of Medicine II, University of Freiburg - Medical Center, Freiburg, Germany.

A34 Oncogenic KRAS regulates pancreatic cancer cell signaling via stromal reciprocation. Claus Jorgensen, CRUK Manchester Institute, The University of Manchester, Manchester, United Kingdom.


A36 The pattern of exosomal marker (CD63) expression using immunohistochemistry (IHC) in malignant and non-malignant (normal, inflammatory and pre-malignant) ductal cells in resected pancreatic tissues. Marcus Tan, Mitchell Cancer Institute, The University of South Alabama, Mobile, AL, United States.

A37 Targeting RAGE in pancreatic cancer using monoclonal antibodies. Estelle Leclerc, North Dakota State University, Fargo, ND, United States.

A38 Hif1α deletion reveals pro-neoplastic function of B cells in pancreatic neoplasia. Kyoung Eun Lee, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.

A39 Expression of alternatively spliced tissue factor in pancreatic neuroendocrine tumors. Clayton Lewis, University of Cincinnati College of Medicine, Cincinnati, OH, United States.

A40 Gene expression profiling of pancreatic cancer precursors directly from formalin fixed paraffin embedded (FFPE) tissue without nucleic acid extraction. Bryan Lo, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.

A41 GPRC5A acts as a potent oncogene in pancreatic cancer. Eric Londin, Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.

A42 The stem cell signal Musashi is required for pancreatic cancer progression and therapy resistance. Nikki Lytle, University of California, San Diego, La Jolla, CA, United States.

A43 Activin receptor type IA in pancreatic cancer and its implications in tumor progression. Georgina Mancinelli, University of Illinois at Chicago, Chicago, IL, United States.

A44 Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer. Pawel Mazur, Stanford University, Stanford, PA, United States.

A45 Neat1 is a p53-inducible lncRNA important for pancreatic cancer suppression. Stephano Mello, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States.

A46 AdipoRon suppresses ERK and STAT3 to inhibit pancreatic cancer growth. Fanuel Messaggio, University of Miami, Miami, FL, United States.

A47 The acinar differentiation factor PTF1A negatively regulates EGFR-mediated acinar cell reprogramming. Shuba Narayanan, University of Utah, Salt Lake City, UT, United States.

A49 Pharmacological inhibition of PIM kinases in combination with chemotherapeutic drugs decreases cell viability of pancreatic cancer cells. Brittany Nixon, North Carolina Central University, Durham, NC, United States.

A50 Genotype tunes PDAC tension to induce matricellular-fibrosis and tumor aggression. Michael Pickup, UCSF, San Francisco, CA, United States.

A51 Notch4 acts as an oncogenic signal in pancreatic tumorigenesis. Wanglong Qiu, Columbia University Medical Center, NY, United States.

A52 Stromal fibroblasts facilitate pancreatic cancer cell invasion by a novel invadopodia-independent matrix degradation process. Gina Razidlo, Mayo Clinic, Rochester, MN, United States.

A53 ADAM12 contributes to the malignant potential of pancreatic cancer and may serve as a non-invasive biomarker for its detection. Roopali Roy, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.

A54 The role of discoidin domain receptor 1 in pancreatic injury and pancreatic tumorigenesis. Jeanine Ruggeri, University of Michigan, Ann Arbor, MI, United States.

A55 Overexpression of the basic helix-loop-helix transcription factor, E47, promotes p16-independent senescence in established and patient-derived xenograft lines. Kathleen Scully, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.

A56 Targeting eIF4A dependent translation as therapeutics in pancreatic cancer. Kamini Singh, Memorial Sloan Kettering Cancer Center, New York, NY, United States.

A57 Nerves are abundant in the PanIN microenvironment and promote PanIN organoid proliferation via the neuropeptide substance P (SP). Smrita Sinha, Memorial Sloan Kettering Cancer Center, New York, NY, United States.

A58 ATM deficiency increases genomic instability and metastatic potential in murine pancreatic ductal adenocarcinoma. Beatriz Sosa-Pineda, Northwestern University Feinberg Medical School, Chicago, IL, United States.

A59 Crosstalk of different macrophage populations with pancreatic acinar or PanIN cells and contribution to development of pancreatic cancer. Peter Storz, Mayo Clinic, Jacksonville, FL, United States.

A60 Loss of PDX1 sensitizes acinar cells to oncogenic KRAS induced transformation. Kenneth Takeuchi, University of Michigan, Ann Arbor, MI, United States.

A61 CAF-derived ANXA6+-exosomes support pancreatic cancer aggressiveness and serve as a circulating biomarker. Richard Tomasini, CRCM, Marseille, France.

A62 ATDC is required for KRAS-induced pancreatic tumorigenesis. Lidong Wang, University of Michigan, Ann Arbor, MI, United States.

A63 Human pancreatic cells have distinct aspects in induction of acinar to ductal metaplasia. Pei Wang, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.

A65 Initiation of pancreatic metaplasia requires ADAM17-mediated autocrine signaling, not paracrine signaling derived from macrophages. Hui-Ju Wen, University of Michigan, Ann Arbor, United States.

A66 Runx3 drives metastatic programs in pancreas cancer. Martin Whittle, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.

A67 TFF (Trefoil Factor Family) is a novel tumor suppressor and can be the therapeutic target for pancreatic cancer. Junpei Yamaguchi, Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.

A68 Oncogenic Kras prevents myeloid cell-mediated pancreatic tissue repair. Yaqing Zhang, University of Michigan, Ann Arbor, MI, United States.


A70 Identification of pancreatic cancer neoantigens by exome and RNA sequencing analysis. Darren Cullinan, Department of Surgery, Washington University, St. Louis, MO, United States.

A71 Targeting immunotherapy to the pancreatic tumor microenvironment. Stephanie Dougan, Dana-Farber Cancer Institute, Boston, MA, United States.

A72 Phase 1 study of nivolumab (nivo) + nab-paclitaxel (nab-P) ± gemcitabine (G) in pancreatic cancer (PC): safety evaluation of patients treated with nivo + nab-P in arm A. Howard Hochster, Yale Cancer Center, New Haven, CT, United States.


A74, PR11 Dual CCR2/CXCR2 chemokine receptor blockade prevents tumor compensatory myeloid recruitment in pancreatic cancer. Timothy Nywening, Washington University, St Louis, MO, United States.

A75 Meloxicam and nimesulide modulate immunity in pancreatic cancer. Erik Ramos, Centro de Investigacion del Cancer en Sonora, Ciudad Obregon, Sonora, Mexico.

A76 Influence of IL-17-secreting immune cells on pancreatic cancer stemness. Yu Zhang, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

A77 Screening of conditionally reprogrammed patient-derived carcinoma cells identifies ERCC3-MYC interactions as a target in pancreatic cancer. Igor Astsaturov, Fox Chase Cancer Center, Philadelphia, PA, United States.

A78 Enhancing pancreatic cancer chemotherapy response by targeted inhibition of TGFβ induced tumorigenic signaling. Niranjan Awasthi, Indiana University School of Medicine, South Bend, IN, United States.

A79 Cysteine deprivation, but not glutathione depletion, causes ferroptotic cell death in pancreatic cancer cells. Michael Badgley, Columbia University, New York City, NY, United States.
A80 Targeted depletion of extracellular matrix components in PDA eases barriers to treatment. Markus Carlson, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.

A81 Peripheral immune biomarkers as a predictor of pancreatic cancer progression. Jill Gershan, Medical College of Wisconsin, Milwaukee, WI, United States.

A82 Ultra-specific isolation of circulating tumor cells enables rare-cell RNA profiling. Rhonda Jack, University of Michigan, Ann Arbor, MI, United States.

A83 Identifying metabolic dependencies in obesity-associated pancreatic cancer. Nada Kalaany, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.

A84 PDAC initiation and progression occurs more rapidly from KrasG12D-expressing ductal cells than KrasG12D-expressing acinar cells in the absence of Trp53. Janel Kopp, The University of British Columbia, Vancouver, British Columbia, Canada.

A85 Metabolic wiring dictates GOT1 dependency in pancreatic cancer. Costas Lyssiotis, University of Michigan, Ann Arbor, MI, United States.

A86 Piperlongumine enhances the efficacy of gemcitabine in pancreatic cancer cells in vitro and in vivo. Jiyan Mohammad, North Dakota State University, Fargo, ND, United States.

A87 ATDC regulates the NRF2-mediated antioxidant response in pancreatic cancer. Vinee Purohit, University of Michigan Health System, Ann Arbor, MI, United States.

A88 The synthetic triterpenoid CDDO-Imidazolide reduces immune cell infiltration and cytokine secretion in the KC mouse model of pancreatic cancer. Ana Sofia Leal, Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan, United States.

A89 Is it justified to have pancreaticoduodenectomy in elderly patients with pancreatic malignancy- a population-based study. Ching-Yao Yang, National Taiwan University Hospital, Taipei, Taiwan.

A90 Mesothelin confers tumor cell vulnerabilities for gefitinib treatment. Qizhi Yao, Baylor College of Medicine, Houston, TX, United States.

B01 Epigenetic alterations mediated by Ring1b are crucial for acinar-to-ductal metaplasia and pancreatic carcinogenesis. Simone Benitz, Klinikum rechts der Isar, Technische Universität München, München, Germany.

B02, PR04 Nrf2 promotes mRNA translation in pancreatic cancer. Iok In Christine Chio, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States.

B03 Pancreatic cancer stem cells: Can it be restrained? Neha Chopra, Sir Gangaram Hospital, New Delhi, India.

B04 NRF2 regulates serine biosynthesis in pancreatic ductal adenocarcinoma. Gina DeNicola, Weill Cornell Medicine, New York, NY, United States.

B05 Ecto-5'-nucleotidase (CD73) confers radioresistance in pancreatic cancer. Yuchun Du, University of Arkansas, Fayetteville, AR, United States.

B06 Slug inhibits pancreatic cancer initiation by blocking Kras-induced acinar-ductal metaplasia. Kazumi Ebine, Northwestern University, Chicago, IL, United States.

B07 Macrophage-derived prolactin promotes pancreatic cancer progression. Farzad Esni, University of Pittsburgh, Pittsburgh, PA, United States.

B08 ER chaperone GRP78 increases chemoresistance in pancreatic ductal adenocarcinoma. Jenifer Gifford, University of Notre Dame, South Bend, IN, United States.

B09 TGFβ1 expression may ameliorate the poor survival associated with high KRAS expression in patients with resectable pancreatic carcinoma. Evan Glazer, Moffitt Cancer Center, Tampa, FL, United States.

B10 Tumor-derived Interleukin-35 promotes pancreatic ductal adenocarcinoma cells extravasation and metastasis via inducing ICAM1 expression. Chongbiao Huang, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.


B12 CLPTM1L and GRP78 Interact and Promote Pancreatic Tumor Survival Under ER-Stress and Chemoresistance Through Cell-Surface Translocation and Interaction with PI3K. Michael James, Medical College of Wisconsin, Milwaukee, WI, United States.
B13 Novel treatment strategy for pancreatic cancer by targeting the ‘undruggable’ Ras oncoprotein. Yoshihito Kano, University of Toronto, Toronto, Canada.


B15 Defining functional PDAC-suppressive mechanisms of the acinar differentiation factor PTF1A. Nathan Krah, University of Utah, Salt Lake City, UT, United States.

B16, PR09 Loss of SIRT6 reactivates the RNA-binding protein Lin28b to drive pancreatic cancer. Sita Kugel, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, United States.

B17 BET inhibitors block pancreatic stellate cell collagen production and attenuate fibrosis in vivo. Krishan Kumar, Departments of Medicine and Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.

B18 Molecular cancer testing of KRAS and miR-21 from EUS-guided biopsies of pancreatic tissue: Utility of aspirates vs. cytology. Lucie Benesova, Genomac Research Institute, Prague, Czech Republic.

B19 Kras mutation imparts neoplastic potential on duct cells but not acinar cells in a mouse model of obstructive chronic pancreatitis. Anna Means, Vanderbilt University Medical Center, Nashville, TN, United States.

B20 The necrosome promotes pancreatic oncogenesis via CXCL1 and mincle-induced immune suppression. George Miller, NYU Langone Medical Center, New York, NY, United States.


B22 Invitro and invivo proof of concept for an effective antineoplastic combination of novel antiHIF therapy in pancreatic cancer. M. Nezami, Pacific Medical Center of Hope, Fresno, CA, United States.

B23 Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Katherine Richards, University of Notre Dame, South Bend, IN, United States.

B24 p53 mediates reprogramming of cancer-associated fibroblasts in pancreatic cancer. Maya Ridinger, Salk Institute, San Diego, CA, United States.

B25 Activation of Wnt/β-catenin signaling pathway enhances pancreatic cancer development and the malignant potential via up-regulation of Cyr61/CCN1. Makoto Sano, Nihon University School of Medicine, Tokyo, Japan.

B26 Altered eIF3f subcellular localization and expression in pancreatic ductal adenocarcinomas and its precursor lesions. Jiaqi Shi, University of Michigan, Ann Arbor, MI, United States.

B27 Interdicting the cytokine-mediated paracrine communication between pancreatic cancer and stellate cells as a new treatment approach for pancreatic ductal adenocarcinoma. Yu Shi, Salk Institute for Biological Studies, La Jolla, CA, United States.

B29 The elucidation for functional roles of Metadherin in metastatic cascade of pancreatic cancer. Kensuke Suzuki, Chiba University, Chiba-City, Chiba, Japan.

B30 Prrx1 isoforms regulate pancreatic cancer stem cell functions during pancreatic cancer progression. Shigetsugu Takano, Department of General Surgery, Chiba University, Chiba, Chiba, Japan.

B31 The MUC4 oncomucin mediates resistance of human pancreatic cancer cells to FOLFIRINOX drugs. Isabelle Van Seuningen, Inserm UMR-S 1172/JPARC, Lille, France.

B32 GRP55 antagonists alter tumor microenvironment and inhibit tumor growth in a pancreatic tumor xenograft model. Irving Wainer, Mitchell Woods Pharmaceuticals, Shelton, CT, United States.

B33 Cancer-FOXP3 recruits FOXP3+Treg Cells via CCL5 in pancreatic ductal adenocarcinoma. Xiuchao Wang, Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.

B34 A Novel MIF-driven signaling drives disease aggressiveness by targeting NR3C2 in pancreatic cancer. Shouhui Yang, National Cancer Institute, Bethesda, MD, United States.

B35 Molecular and phenotypic profiling of pancreatic cancer cachexia in novel murine models and patients. Teresa Zimmers, Indiana University School of Medicine, Indianapolis, IN, United States.

B36 Preclinical development of a multikinase targeting molecule with activity against the cancer stem cell phenotype in pancreatic adenocarcinoma. Taylor Aiken, National Cancer Institute, Bethesda, MD, United States.

B37 Mesothelin-targeted immunotoxin RG7787 (LMB-100) preferentially depletes secreted proteins and short-lived intracellular proteins to augment tumor cell killing by taxanes. Christine Alewine, NIH- National Cancer Institute, Bethesda, MD, United States.

B38 Clinical translation of nuclear export inhibitor in metastatic pancreatic cancer. Asfar Azmi, Karmanos Cancer Institute, Wayne State Institute, Detroit, MI, United States.

B39 Inhibition of cathepsin S protease impedes adapted chronic autophagy of pancreatic ductal adenocarcinoma under acidic pH microenvironment. Wun-Shaing Chang, National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.


B41 The angiotensin receptor blocker telmisartan inhibits the growth of pancreatic ductal adenocarcinoma and improves survival. Jelena Grahovac, Massachusetts General Hospital, Boston, MA, United States.

B42 Multiplexed in vivo small molecule screening identifies the lipase ABHD6 as a pro-metastatic factor in pancreatic cancer. Barbara Grüner, Stanford University, Stanford, CA, United States.

B43 High-throughput drug screening model using 3D cultured human pancreatic ductal adenocarcinoma cells. Rainer Heuchel, Karolinska Institutet, Department of Clinical Intervention and Technology (CLINTEC), Stockholm, Sweden.

B44 Optimization and IND enabling investigations of MVT-2163 (89Zr-DFO-5B1) leading to First-in-Human readiness. Jacob Houghton, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell and patient-derived tumor organoids. Ling Huang, Beth Israel Deaconess Medical Center, Boston, MA, United States.


Nanoliposomal irinotecan (nal-IRI) is an active treatment and reduces hypoxia as measured through longitudinal imaging using [18F]FAZA-PET in an orthotopic patient-derived model of pancreatic cancer. Stephan Klinz, Merrimack Pharmaceuticals, Inc., Cambridge, MA, United States.

A novel high throughput screening platform identifies statins as inducers of basic Helix-Loop-Helix activity, p21 and growth arrest in pancreatic cancer cell and patient derived xenograft lines. Reymehne Lahmy, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.

The therapeutic effects of bromodomain inhibitors on the tumor microenvironment in pancreatic cancer. Ana Sofia Leal, Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States.

Noninvasive acoustic cavitation transiently enhances tumor perfusion and drug delivery and alters immune response. Andrew Rhim, University of Michigan, Ann Arbor, MI, United States.

Regulation of HIF1α under hypoxia by APE1/Ref-1 impacts CA9 expression: Dual-targeting in patient-derived 3D pancreatic cancer models. Derek Logsdon, Indiana University School of Medicine, Department of Pharmacology and Toxicology, Indianapolis, IN, United States.

Phospho-valproic acid inhibits pancreatic cancer growth in mice: Enhanced efficacy by its formulation in poly-(L)-lactic acid-poly(ethylene glycol) nanoparticles. Gerardo Mackenzie, Stony Brook University, Stony Brook, NY, United States.

The integrin αvβ6 is a promising therapeutic target for treating PDAC. John Marshall, Barts Cancer Institute, QMUL, London, United Kingdom.


PR10 CXCR2 inhibition suppresses metastasis and improves the response to immunotherapy in pancreatic cancer. Jen Morton, Cancer Research UK Beatson Institute, Glasgow, United Kingdom.

Paclitaxel-loaded microparticles promote cancer cell death and reduce gemcitabine resistance in a pancreatic cancer cell line. Maria Munoz-Sagastibelza, SUNY Downstate Medical Center, Brooklyn, NY, United States.

Effects of MEK inhibition alone or in combination with PI3K-mTOR pathway inhibitors in pancreatic ductal adenocarcinoma in vitro and on an innovative ex vivo fresh tumor tissue culture model. Cindy Neuzillet, Department of Oncology and Inserm UMR1149, Beaujon University Hospital, Clichy, France.

Combination therapy with the novel small molecule drug conjugate SW V-49 and gemcitabine is a potent pancreatic cancer therapeutic. Kerri Ohman, Washington University School of Medicine, St. Louis, MO, United States.
B59 Black raspberries inhibit pancreatic carcinogenesis by suppressing Raf/MEK/ERK/STAT3 signaling pathways and promoting apoptosis. Pan Pan, Medical College of Wisconsin, Milwaukee, WI, United States.

B60 Targeting the polyamine addiction of pancreatic cancers: Combination therapies and biomarkers. Otto Phanstiel, University of Central Florida, Orlando, FL, United States.

B61 PR06 A novel β2 adrenergic-nerve growth factor feed forward loop promotes pancreatic cancer. Bernhard Renz, University of Munich, Munich, Germany.


B63 An effective new strategy to control and inhibit the “undruggable” oncogenic K-RAS hyperactivation in human pancreatic cancer. Amy Tang, Eastern Virginia Medical School, Norfolk, VA, United States.


B65 The combination of beta-cyclodextrin & 2-deoxyglucose worked synergistically with TRAIL to induce apoptosis in 90% of Panc-1 cells at 10ng/ml of TRAIL. Ryuji Yamaguchi, Kansai Medical University, Hirakata, Osaka, Japan.

B66 BET inhibition remodels tumor stroma and suppresses progression of human pancreatic cancer. Keisuke Yamamoto, The University of Tokyo, Tokyo, Japan.

B67 Stroma breaking dual targeted theranostic nanoparticles for image-guided and targeted therapy of pancreatic cancer. Lily Yang, Emory University, Atlanta, GA, United States.

B68 Role of CD44 in pancreatic cancer cell plasticity. James Freeman, University of TX Health Sci Ctr, San Antonio, TX, United States.

B69 Tuft cell signaling can induce pancreatic inflammation and promote pancreatic ductal adenocarcinoma. Megan Hoffman, University of Michigan, Ann Arbor, MI, United States.

B70 RSPO2 enhances canonical Wnt signaling to confer stemness-associated traits to susceptible pancreatic cancer cells. Matthias Ilmer, Ludwig-Maximilians-University, Munich, Germany.

B71 Resistance to MEK inhibition in pancreatic cancer is associated with amphiregulin mediated EGFR-STAT3 activation. Nagaraj Nagathihalli, Department of Surgery, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, United States.


B74 The role of GLI2 as a driver of an aggressive subtype of pancreatic cancer. Rushika Perera, University of California, San Francisco, San Francisco, CA, United States.

B75 Targeting the immune-microenvironment with combined inhibition of MEK and STAT3 in a mouse model of pancreatic cancer. Casey Roberts, University of Miami, Miami, FL, United States.
B76 Translating keratin 17 status to stratify clinically relevant pancreatic cancer heterogeneity and survival. Kenneth Shroyer, Stony Brook University, Stony Brook, NY, United States.

B77 CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. Martin Sprick, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany.

B78 RAD51 sensitizes pancreatic cancer cells to AKT inhibition. Surpiya Srinivasan, Department of Surgery, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, United States.

B79 Integrative quantitative analysis of pancreatic ductal adenocarcinoma mRNA, miRNA, and methylation profiles reveals interactions that are dependent on tumor cellularity. Aristeidis Telonis, Thomas Jefferson University, Philadelphia, PA, United States.


B82, PR02 Tumor metabolism and early metabolic response predicts survival of metastatic pancreatic cancer patients treated with FOLFIRINOX chemotherapy. Do-Youn Oh, Seoul National University Hospital, Seoul, Korea, Republic Of.

B83 Targeting TRPV6 oncochannel for the treatment of pancreatic cancer: A phase I trial experience. Dominique Dugourd, MD Anderson Cancer Center, Houston, TX, United States.

B84 Physiologic pancreatic cancer imaging using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Erin Gilbert, Oregon Health & Science University, Portland, OR, United States.

B85 Pathologic complete response following systemic chemotherapy with or without chemoradiotherapy for borderline resectable/unresectable pancreatic adenocarcinoma: Indiana University experience. Neda Hashemi-Sadraei, Indiana University, Indianapolis, IN, United States.

B86 Novel assessment of SPARC expression by hierarchical clustering in pancreatic ductal adenocarcinoma shows distinct prognostic and predictive groups. Steve Kalloger, University Of British Columbia, Vancouver, British Columbia, Canada.

B87 Co-expression of GLUT1 and MCT4 is a poor prognostic marker and predicts response to adjuvant chemotherapy in PDAC. Joanna Karasinska, Pancreas Centre BC, Vancouver, British Columbia, Canada.

B88 Clinical trials targeting APE1/Ref-1 in pancreatic cancer with APX3330. Mark Kelley, Indiana University Simon Cancer Center, Indianapolis, IN, United States.

B89 Neoadjuvant FOLFIRINOX in patients with resectable pancreatic cancer. Safi Shahda, Indiana University School of Medicine, Indianapolis, IN, United States.

B90 PFK-158 is a first-in-human inhibitor of PFKFB3 that selectively suppresses glucose metabolism of cancer cells and inhibits the immunosuppressive Th17 cells and MDSCs in advanced cancer patients. Gilles Tapolsky, Advanced Cancer Therapeutics, Louisville, KY, United States.