

Non-clinical Models for Safety Assessment of Immuno-oncology Products

September 6, 2018 | Washington, DC

@FDAOncology

@AACR

Workshop Cochairs:

John K. Leighton, PhD Haleh Saber, PhD Julie Scheider, PhD

Welcome

Speakers:

John K. Leighton, PhD

Non-Clinical Models for Safety Assessment of Immuno-Oncology Products

September 6th, 2018 Marriott Wardman Park, Washington, DC

John K. Leighton
Director, Division of Hematology Oncology Toxicology
Office of Hematology and Oncology Products, CDER

www.fda.gov

FDA Alerts Healthcare Professionals and Oncology Clinical Investigators about Two Clinical Trials on Hold Evaluating KEYTRUDA® (pembrolizumab) in Patients with Multiple Myeloma

Update [September 20, 2017]: The FDA has informed multiple investigators who have ongoing clinical trials using PD1/PD-L1 oncology drugs in combination with immunomodulatory agents or in hematologic malignancies combined with other classes of drugs whether their trials must be temporarily stopped to allow for modifications or must be permanently stopped.

[August 31, 2017] Based on data from two recently halted clinical trials, the U.S. Food and Drug Administration today is issuing this statement to inform the public, health care professionals, and oncology clinical investigators about the risks associated with the use of KEYTRUDA® (pembrolizumab) in combination with dexamethasone and an immunomodulatory agent (lenalidomide or pomalidomide) for the treatment of patients with multiple myeloma. KEYTRUDA® (pembrolizumab) is not approved for treatment of multiple myeloma.

Contents lists available at ScienceDirect

Regulatory Toxicology and Pharmacology

journal homepage: www.elsevier.com/locate/yrtph

An FDA oncology analysis of immune activating products and first-in-human dose selection

Haleh Saber*, Ramadevi Gudi, Michael Manning, Emily Wearne, John K. Leighton

US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Hematology and Oncology Products, 10903 New Hampshire Ave, Silver Spring, MD 20903, United States

Table 4A Examples of antibodies with FIH doses at \leq 50% RO.

Target or class[date of IND submission]	FIH dose	HHD (time from IND submission to this dose)	RO ^a at HHD	Ratio of HHD to FIH dose
Checkpoint stimulator [2014]	200 mcg	1200 mg (2 yr)	Saturated	6000
Checkpoint stimulator [2014]	36 mcg	3.6 mg (1 yr)	90%	100
Checkpoint stimulator [2015]	6 mcg	18 mg (1 yr)	Saturated	3000
Checkpoint stimulator [2014]	1.5 mcg	30 mg (1 yr)	Saturated	20,000
Checkpoint stimulator[2010]	6 mcg	120 mg (5 yr)	Saturated	20,000
Expected to activate the immune system based on experience with another product targeting the same antigen [2009]	6 mcg	1.2 g (5 yr)	Saturated	200,000

HHD: highest human dose with acceptable toxicities, at the cut-off date.

Note: doses are converted to a flat dose using 60 kg as the body weight.

^a Estimated based on in vitro binding data.

Current Status

- A 2016 FDA publication on CPI/CPS surveyed current approaches to developing these products
 - Some data gaps were identified
 - Additional work on IO products has been published by several different groups
- In Sept 2017 NCI/JAX sponsored a Think Tank on immune interventions in oncology
 - Focused on modeling opportunities in mice and human specimens
 - Uses and limitations of mouse models
 - Development of biomarkers
 - Research needs
- Regulatory science data gaps were not discussed
- FDA research on humanized mouse models is ongoing

Nonclinical Models for Immunotherapy

- Mouse xenografts
- Syngeneic mice
- Genetically-modified mice
- Humanized mice
- Companion animals
- Organs-on-a-chip/organoids/etc.

Review Challenges

- Definitions of pharmacologic activity and MABEL are vague
 - Generally derived from in vitro data for IO products
- Lack of transparency in translating functional assays/receptor occupancy to FIH dose
 - Not all sponsors use the same approach and details are sometimes lacking
- Challenges in integrating NHP pk/ADME and xenograft data into FIH dose selection/safety assessments
- Challenges in using other relevant factors (e.g., receptor turnover/tumor expression) in FIH dose selection

Discussion Topics

- Current challenges in nonclinical development of IO products
 - How to fill in gaps? Existing paradigm or innovative approaches?
- Nonclinical models for IO products
 - Advancing the field with improved models?
 - Utility of these models in better predicting clinical outcome of safety? Efficacy?
 - Will one model be sufficient to study multiple targets?
 - Pros and cons of using different PD models to evaluate the activity and safety of IO products?
 - Use in FIH dose selection?

Morning Session

Speakers:

Marcela V. Maus, MD, PhD Sarah Javaid, PhD Karolina Palucka, MD, PhD Gregory Beatty, MD, PhD Amy K. LeBlanc, DVM Lei Zheng, MD, PhD

Current non-clinical models for immuno-oncology (T cell) products

Marcela V. Maus, MD, PhD

FDA-AACR Non-clinical models for safety assessment of immuno-oncology products

Washington, DC, September 6, 2018

Statement(s) of the obvious

- There is no animal model that can fully predict the safety, either on- or off-target effects, of a particular new drug in human patients
- Immuno-oncology in particular attempts to modulate a interplay between multiple immune cell types, the tumor, and normal tissues
 - No animal has a fully human immune system, a tumor, and normal human tissues
- Immuno-oncology 'drugs' do not get cleared by the liver/kidney with defined half-lives and kinetics
- Patients are typically ill with the disease and have had prior treatments, whereas animals are asymptomatic and get only 'first-line' treatments

Goals of animal models for immuno-therapies

- Pre-clinical: a path to IND and testing in humans
 - Human T cells are now used as drugs to treat disease; the human T cell is the investigational product!
 - Focus on efficacy (and ideally toxicity, but this is less developed)
 - Animal models not required for most T cell products on path to IND but most sponsors/investigators do use them
- Post-clinical: Modeling observed effects from clinical setting
 - Adverse effects, cytokine release syndrome, neurotoxicity, resistance mechanism
- Basic science:
 - Modeling tumor environment/interactions/basic immunology
 - Modeling a human disease (autoimmunity/transplantation/cancer)

NSG mice: the current standard for path to IND

NSG mice

- Xenografted with human tumor lines/pdx
- Investigational agent is human T cell
- Advantages:
 - Well established, easy to buy or breed, path to IND is feasible
 - Sustains engraftment of human T cells and tumor cells
 - Can discriminate anti-tumor efficacy of different T cell constructs with dose and timing in 4-12 week models

– Limitations:

- Does not model on or off-target toxicity against human tissues
- Does not model cytokine release syndrome/neurotoxicity/macrophage activation syndrome
- Does not model long-term efficacy due to xeno-GvHD

Other mice

SCID/beige

- Have some NK cells and better macrophages than NSG
- Do not engraft as many tumors or T cells as well

Athymic/nude

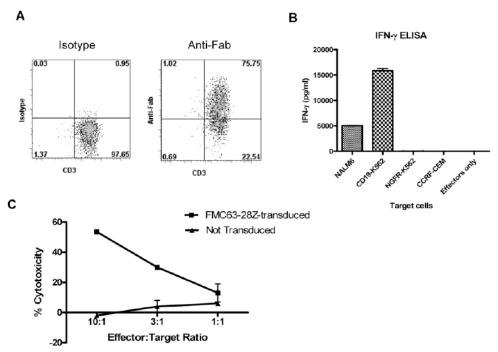
 Have good NK and macrophages, but many human tumors don't engraft at all – not used very often

Syngeneic mouse models

- Few available (mouse CD19, mouse EGFRvIII)
- Use mouse T cells, mouse CARs, mouse tumor no longer studying the human T cell or the investigational product, but can model microenvironment
- Do not develop clinical toxicities observed with human CAR T cells (cytokine release syndrome/MAS, neurologic toxicity)

Reminder of how the field got to axi-cel

Published in final edited form as:

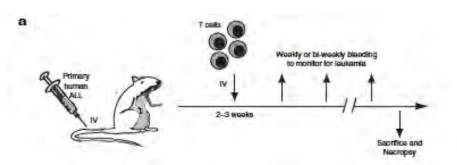

J Immunother. 2009 September; 32(7): 689-702. doi:10.1097/СЛ.0b013e3181ac6138.

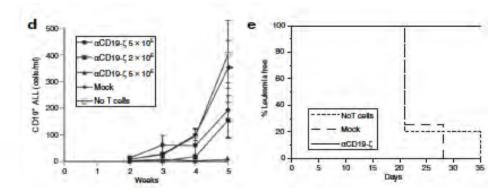
Construction and Pre-clinical Evaluation of an Anti-CD19 Chimeric Antigen Receptor

James N. Kochenderfer * , Steven A. Feldman * , Yangbing Zhao * , Hui Xu * , Mary A. Black * , Richard A. Morgan * , Wyndham H. Wilson $^\Psi$, and Steven A. Rosenberg *

*Surgery Branch of the National Cancer Institute, National Institutes of Health, Bethesda, MD, USA

ΨMetabolism Branch of the National Cancer Institute, National Institutes of Health, Bethesda, MD, USA




Reminder of how we got to... tisagenlecleucel

Chimeric Receptors Containing CD137 Signal Transduction Domains Mediate Enhanced Survival of T Cells and Increased Antileukemic Efficacy *In Vivo*

Michael C. Milone^{1,2}, Jonathan D. Fish^{3,4}, Carmine Carpenito¹, Richard G. Carroll¹, Gwendolyn K. Binder¹, David Teachey^{3,4}, Minu Samanta², Mehdi Lakhal¹, Brian Gloss¹, Gwenn Danet-Desnoyers⁵, Dario Campana^{6,7}, James L. Riley^{1,2}, Stephan A. Grupp^{3,4} and Carl H. June^{1,2}

¹Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania USA; ²Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania USA; ⁴Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania USA; ⁴Department of Medicine, Philadelphia, Pennsylvania, USA; ⁵Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA; ⁶Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA; ⁷Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA

Then what happened?

- CAR T cells in humans were much more potent than expected. Long term remissions seen in the first 5 patients treated at multiple centers.
- Toxicities of cytokine release syndrome (CRS) and neurologic toxicity became apparent at about patient 4...
- You know the rest

- Why wasn't any of this predicted?
 - CRS (and neurotoxicity) requires a myeloid compartment (IL-6, endothelial cell activation....) that interacts with activated T cells

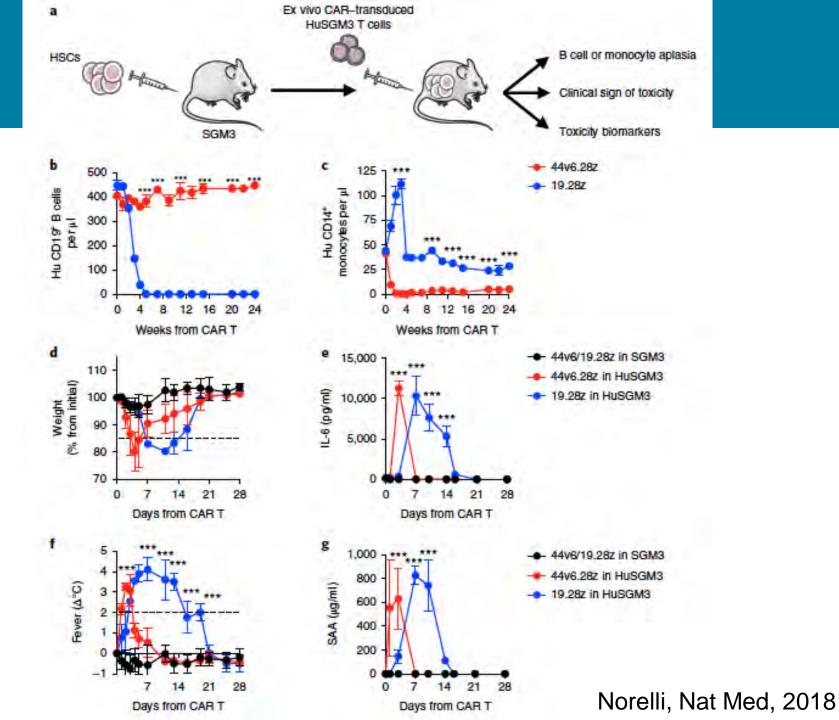
Humanized mice: need to be engrafted with human cord blood to get chimeras, and skew toward myeloid

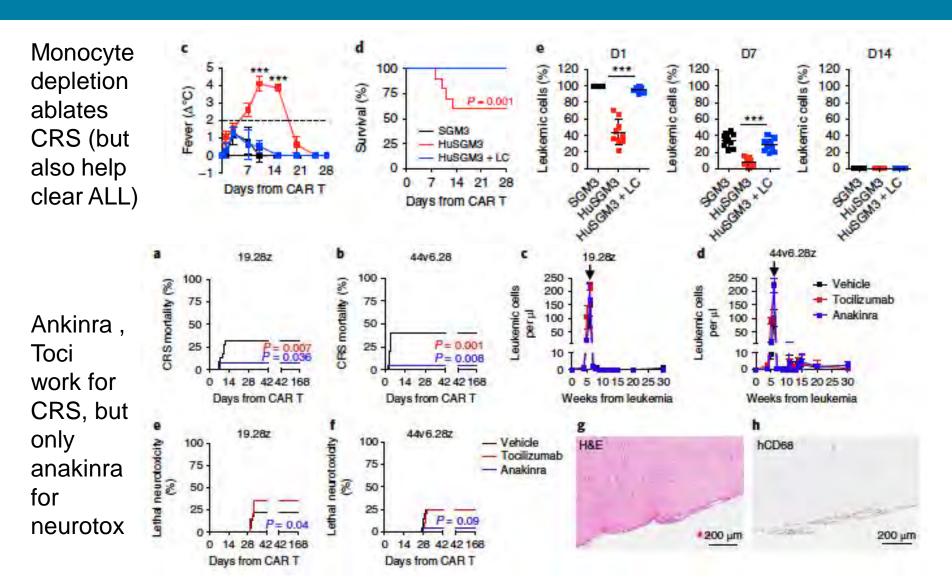
MODEL	NUNDG-EXL	Humanized NSG-SGM3 (or htt-CD34-SGM3)	Humanized MISTRG
STRAIN	HGMMUSE/HLB-HDG	NSG™-SGM3	MISTRG
ALSO KNOWN AS	1_3 Gh+1g	NSGS	-
NOMENCLATURE	NOD Cg (P) Edr. ** (L/m)** Tg(e V a/a/) (TL V (L T) C e F / (10) TJ(C) (L o Tac	NOD.Cg-Prkdcroid //2rginelle/ Tg(CMV- IL3,CSF2,KITLG)1Eav/Mloy5zJ	C:12984-Rag2entitiv Csffmicesto Fiv Csf2/II3milycaracispis Thpomolyteoper II2rgimizer Tg(SIRPA)1Flv/J
BACKGROUND	FIGG (NOS dimin background)	NSG™ (NOD strain background)	Mixed BALB/c x 129S4
CYTOKINES EXPRESSED (other modifications)	Human GM (CSF (C3F4) Human IL 3	Human GM-CSF (CSF2) Human IL-3 Human KITLG (SF)	Human GM-CSF (CSF2) Human IL-3 Human M-CSF (CSF1) Human TPO Human SIRPa
LIFESPAN AFTER CD34+ HSC ENGRAFTMENT	Lip to 7 reanths reported. High Etimiene netro mice decello anemia after s o trafficant	Up to 4 months in angoing studies. Mice develop sporadic anemia after engraftment."	3 weeks after engraftment reaches 10-20% chimerism in peripheral blood if preconditioned with irradiation (+10-12 weeks postengraftment); lifespan may be prolonged by using less potent stem cells, lower cell numbers or avoiding preconditioning.6
OTHER COMMENTS	Broble prigraftment chrough Treation of mouse.	Loss of human graft after 3-4 months ⁵	
Lanel means — on signatures on Vicense Tees required May be used for contract or sponsored studies which purchaser under for-grain terms and union		Research institutions require an MTA, companies require a license prior to shipping. ⁷	Not available to companies or for commercial use."
AVAILABLE FROM	Taconic Grasurances taconic com/hunog-exl Naive: taconic.com/13395	The Lackson Laboraron,	The Jackson Laboratory (60) — 004 et at Poo 100

www.taconic.com

Two new mouse models that model cytokine release syndrome published in Nature Medicine, May 2018

Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells


Margherita Norelli^{1,2}, Barbara Camisa¹, Giulia Barbiera³, Laura Falcone¹, Ayurzana Purevdorj¹, Marco Genua³, Francesca Sanvito⁴, Maurilio Ponzoni⁴, Claudio Doglioni⁶, Patrizia Cristofori⁵, Catia Traversari⁶, Claudio Bordignon^{2,6}, Fabio Ciceri^{2,7}, Renato Ostuni³, Chiara Bonini^{2,8}, Monica Casucci¹ and Attilio Bondanza^{1,2*}


NSG mice transgenic for human IL-3, GM-CSF, and stem cell factor (SGM3) sublethal irradiation of newborn mice (time delay of even 2 days abrogated effect)

injected with human cord blood hematopoeitic stem and progenitor cells

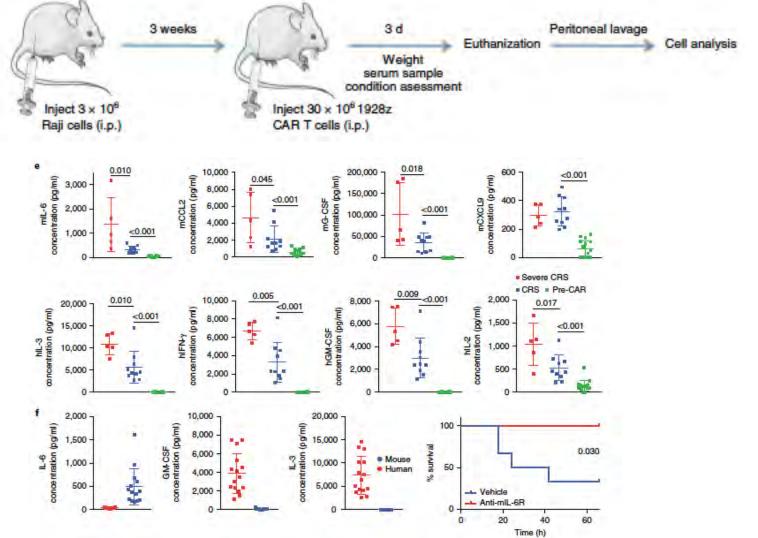
Reconstitute hematopoiesis with B cells, monocytes, T cells, myeloid cells nHuSGM3 mouse T cells hyporesponsive to I-Ag7

but respond to allo (I-Ad) and xeno (human) – which means you need T cells from the same cord or from another mouse injected with same donor (with lower transduction efficiency than mature peripheral blood T cells...?

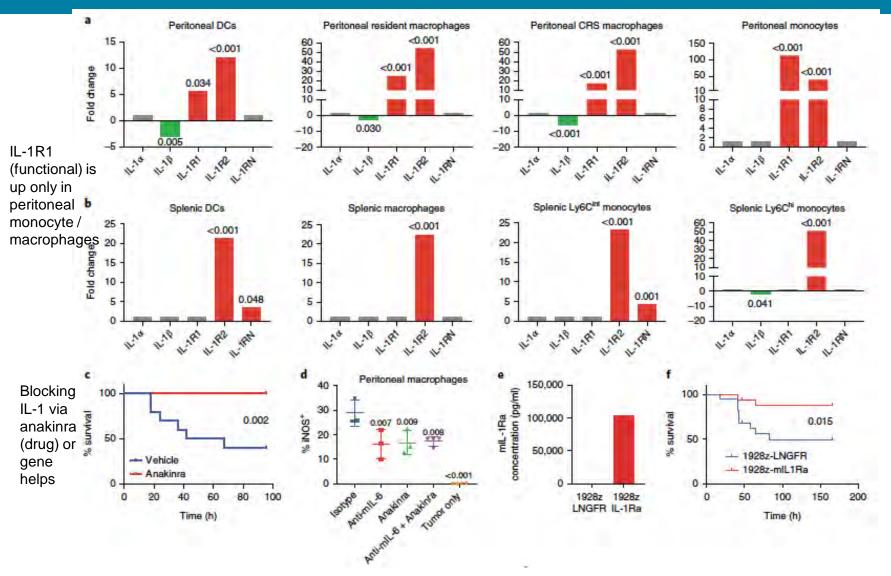
Norelli, Nat Med, 2018

CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade

Theodoros Giavridis 1, Sjoukje J. C. van der Stegen 1, Justin Eyquem 1, Mohamad Hamieh 1, Alessandra Piersigilli 2 and Michel Sadelain 1*


SCID-Beige mice

injected intraperitoneal tumors – allows for larger tumor burden before lethality large numbers required (3e6 Raji ip → 3 weeks → 30e6 CART ip)


CRS developed 2-3 days post-CART (19-28z)

CRS = reduced activity, malaise, piloerection, weight loss... mortality increased serum amyloid (murine equivalent of CRP) mixed human/murine cytokine profile: mIL-6, mG-CSF, hGM-CSF, hIFNg, hIL2 hIFNg and hGM-CSF don't bind murine receptors

→ unclear what triggers murine innate immunity treatment with anti-murine IL-6 receptor blocking antibody prevented mortality

Giavridis, Nat Med, 2018

Giavridis, Nat Med, 2018

Non-mouse: Canines

- Limited reagents to grow/study canine T cells; outbred; useful for veterinarians and pet owners. Unknown toxicity manifestations
- Canine signaling domains? Canine viral vector envelopes?

Feasibility and Safety of RNA-transfected CD20-specific Chimeric Antigen Receptor T Cells in Dogs with Spontaneous B Cell Lymphoma

M Kazim Panjwani¹, Jenessa B Smith², Keith Schutsky², Josephine Gnanandarajah¹, Colleen M O'Connor³, Daniel J Powell Jr² and Nicola J Mason¹

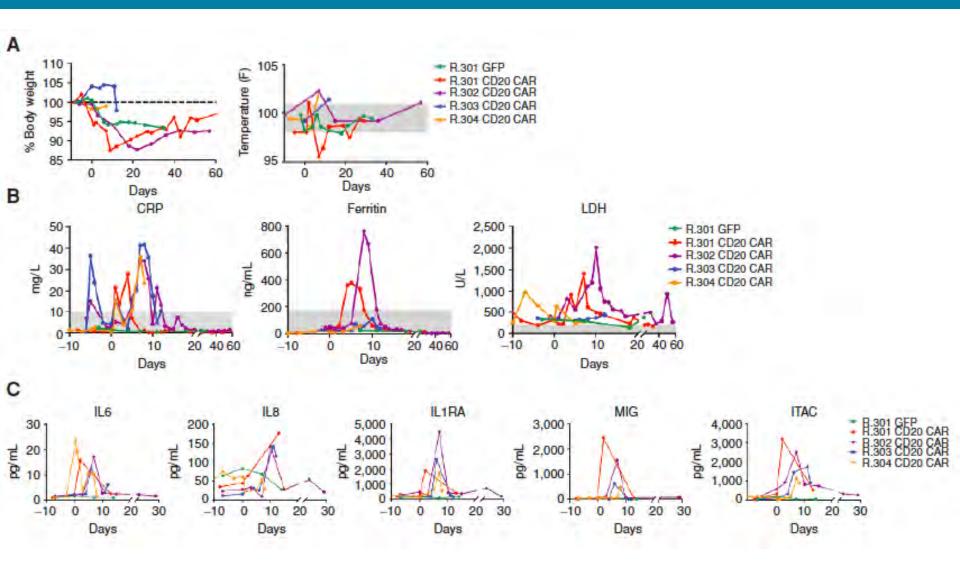
Molecular Therapy, 2016

Toward Immunotherapy With Redirected T Cells in a Large Animal Model: Ex Vivo Activation, Expansion, and Genetic Modification of Canine T Cells

J Immunotherapy, 2014

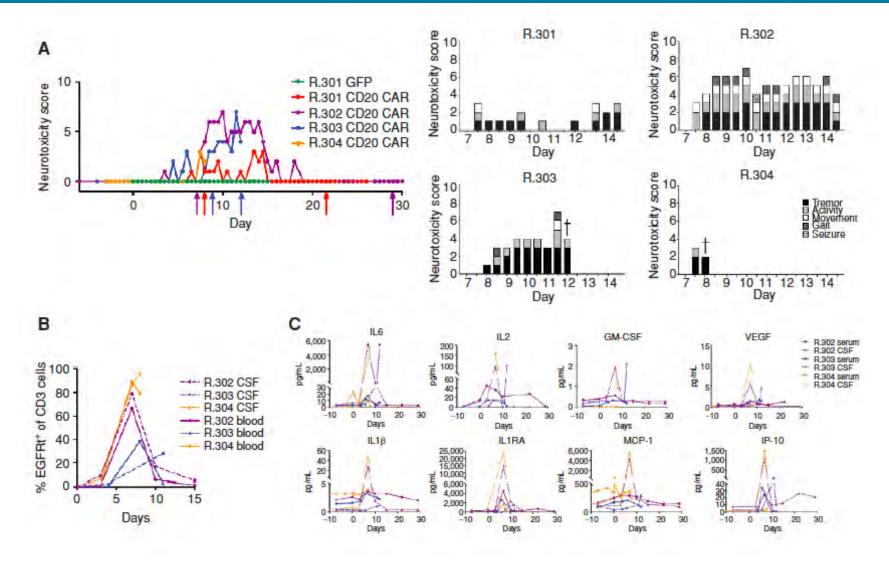
Non-mouse: Non-human primates

 Expensive, limited; poor tolerance of chemotherapy. Some neurologic toxicities modeled (but CD20 not CD19), and not clearly useful for human translation


Chimeric Antigen Receptor T Cell-Mediated Neurotoxicity in Nonhuman Primates

Cancer Discovery, 2018

Agne Taraseviciute^{1,2,3}, Victor Tkachev^{1,2,3}, Rafael Ponce⁴, Cameron J. Turtle², Jessica M. Snyder⁵, H. Denny Liggitt⁵, David Myerson^{2,6}, Luis Gonzalez-Cuyar⁶, Audrey Baldessari⁷, Chris English⁷, Alison Yu¹, Hengqi Zheng^{1,3}, Scott N. Furlan^{1,2,3}, Daniel J. Hunt¹, Virginia Hoglund¹, Olivia Finney¹, Hannah Brakke¹, Bruce R. Blazar⁸, Carolina Berger², Stanley R. Riddell², Rebecca Gardner¹, Leslie S. Kean^{1,2,3}, and Michael C. Jensen^{1,2,3}


Autologous rhesus macaque T cells transduced with anti-CD20
 CAR, given back after cyclophosphamide (no tumor)

Cytokine release syndrome in NHP (RM)

Taraseviciute, Cancer Discovery, 2018

Neurologic toxicity in RM: elevated cytokines in CSF; diffuse infiltration of CAR+ and CAR- T cells in brain parenchyma

Taraseviciute, Cancer Discovery, 2018

Blue-sky thinking

- NSG mice engrafted with a panel of viable human tissues for sale
 - We developed a skin-grafted NSG mouse to test potential skinrelated toxicity
 - Imagine NSG mouse with a little graft (subcu? Orthotopic?) of human heart, lung, brain, liver, skin, HSC. Other desirable tissues could include gut or blood vessel.
 - Could be used to model on-target and off-target toxicity
- NSG mouse that develops macrophage activation syndrome / cytokine release syndrome

Blue-sky thinking

- NSG mice engrafted with a panel of viable human tissues for sale
 - We developed a skin-grafted NSG mouse to test potential skinrelated toxicity
 - Imagine NSG mouse with a little graft (subcu? Orthotopic?) of human heart, lung, brain, liver, skin, HSC. Other desirable tissues could include gut or blood vessel.
 - Could be used to model on-target and off-target toxicity
- Humanized mice that are inbred (serially transplanted and for sale) so that human T cells can be matched/syngeneic to the other immune cells (stem cells, B cells, myeloid cells)

Who knew?

 Who knew that modeling the human immune system and immunotherapies in animals could be so complicated? To obtain slides from Sarah Javaid, PhD, please send an email to sarah.javaid@merck.com with the subject: "Slide Request: FDA-AACR Non-clinical Models Workshop"

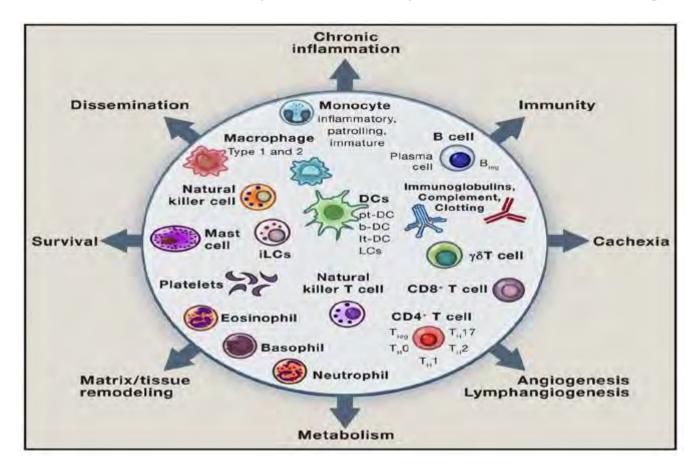
Humanized mice to study cancerimmune system interface

Karolina Palucka, MD, PhD
The Jackson Laboratory for Genomic Medicine
Farmington, CT

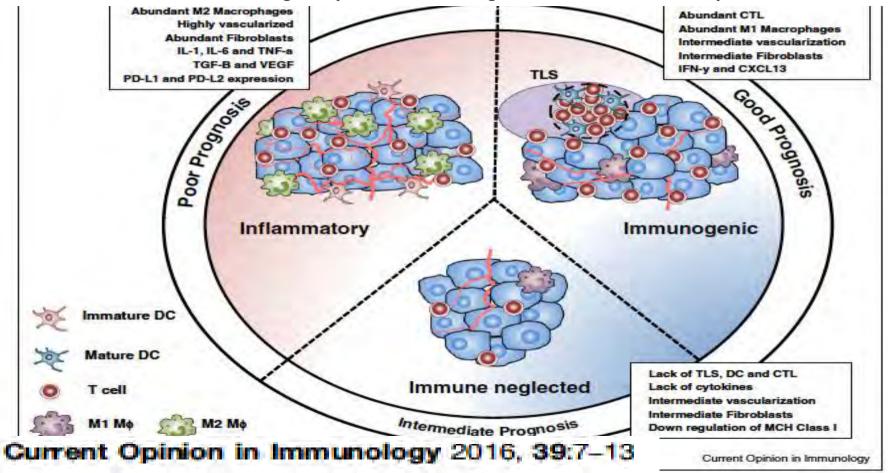
FDA-AACR Workshop September 6th 2018

Disclosure #1

The following relationships exist related to this presentation:


MERCK: grant support

Disclosure #2


Just because the models are imperfect.....
it does not mean they are wrong.....

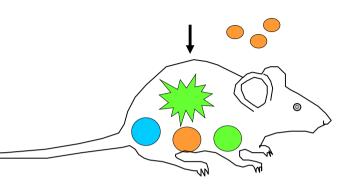
Bob Weinberg

Cancer Immune landscape is complex and heterogeneous

Different types of tumor microenvironments differentially impact efficacy of immunotherapies

Why humanized mice?

- Adaptive immunity: key features are well conserved between mouse and human. But....differences in affinity, antigens, longevity
- Innate immunity: numerous differences between mouse and human

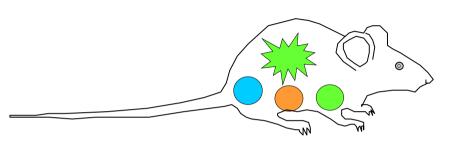

Of Mice and Not Men: Differences between Mouse and Human Immunology J Immunol 2004; 172:2731-2738; ;

Javier Mestas and Christopher C. W. Hughes¹

doi: 10.4049/jimmunol.172.5.2731 http://www.jimmunol.org/content/172/5/2731

Cancer vaccines: mouse studies positive,
 Many human phase III trials fail

Adoptive T cell transfer

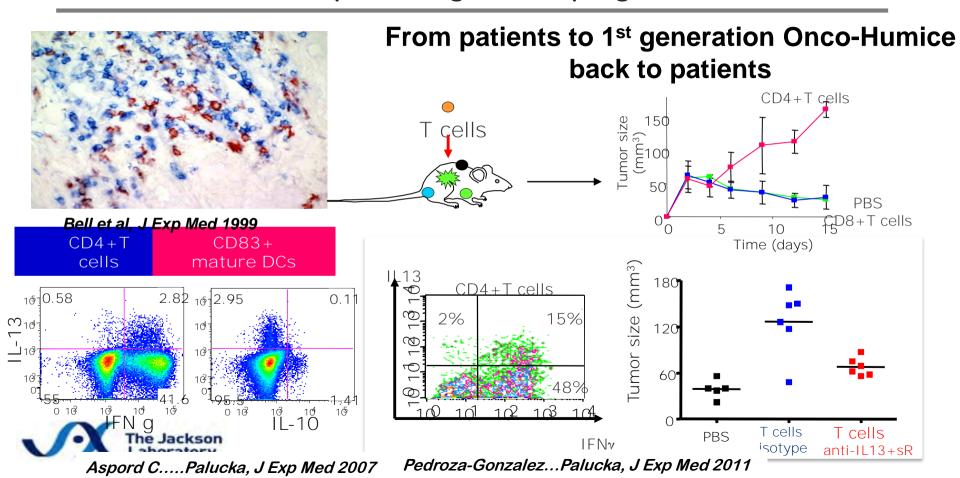


NOD-SCID β2m^{-/-}
mouse
Adult CD34+ HPCs

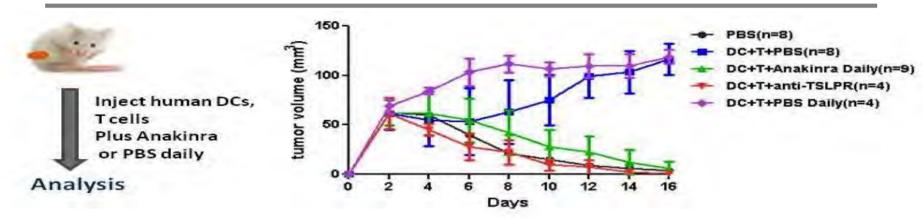
Palucka et al., Blood 2003 Yu et al., Blood 2008 Yu et al., Immunity 2013 Yu et al., JI 2014 Graham et al., Vaccine 2016 Aymeric, Yu et al., Science Immunology 2017

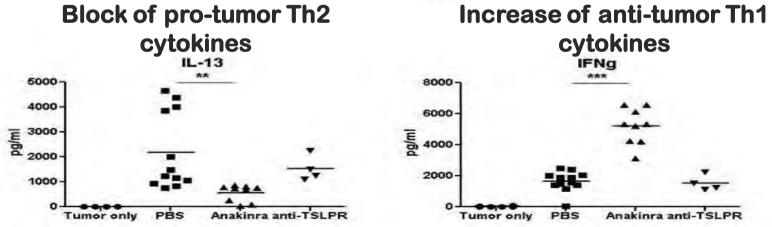
Aspord C, J Exp Med 2007 Pedroza-Gonzalez, J Exp Med 2011 Wu et al, Cancer Immunol Res 2013 Wu et al, Cancer Res 2018

Endogenous T cells



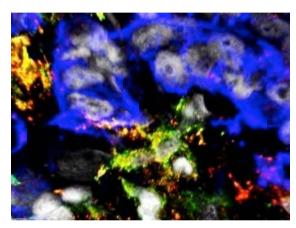
NOD-SCIDγc -/- or Rag2-/-γc -/mouse Fetal/cord blood CD34+ HPCs


MISTRG: Human M-CSF/IL-3, GM-CSF/SCF/SIRPa/TPO NSG and NSG-SGM3:SCF/GM-CSF, IL-3


> Rongvaux et al, Nat Biotech 2014 Wang et al FASEB J 2018

Breast cancer subverts dendritic cell maturation to induce Th2 cells promoting cancer progression

IL1 receptor antagonist (Anakinra) prevents IL-13 production and breast cancer progression in experimental tumors


From humanized mice to patients: Anakinra blocks signature of inflammation in patients

10000

1000

100

L-1b (pg/ml)

Nucleus Cytokeratin CD11c IL1b

Exploratory clinical trial (IRB 012-099) Combination of IL-1 blockade

metastatic TNBC

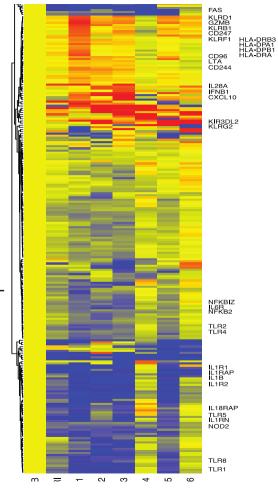
with chemotherapy in

Joyce O'Shaughnessy **Robin Young** Virginia Pascual Romain Banchereau Clinical Team **Patients**

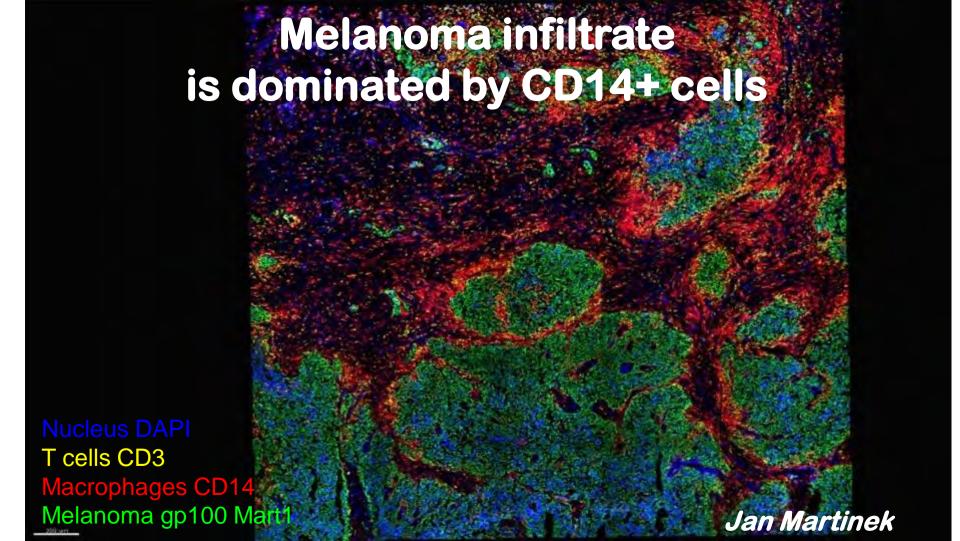
*P=0.01

Stage II

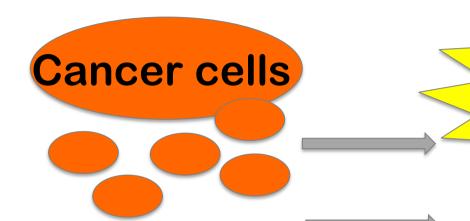
n.s.


 $\Delta\Delta\Delta\Delta$

Stage III-IV


**P=0.006

Stage 0- I


Blood transcriptome

Wu et al. Cancer Res 2018

The fate of antigen in tissue

Dying cancer cells
Exosomes

Homeostatic turnover Immune cells Drugs Dendritic cells

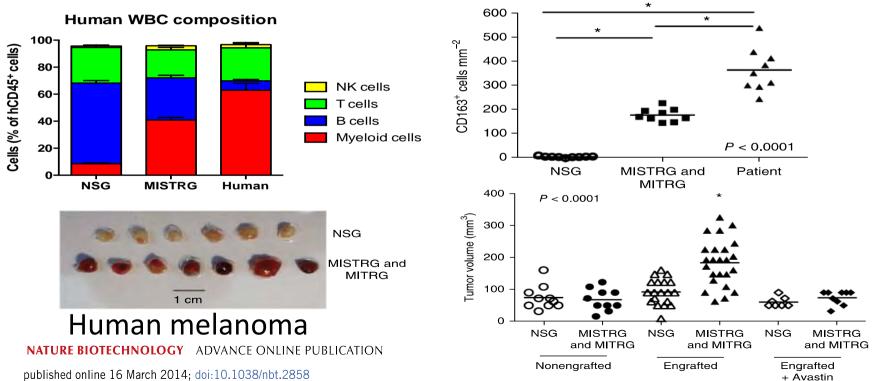
ANTIGEN PRESENTATION

Macrophages

ANTIGEN
DEGRADATION

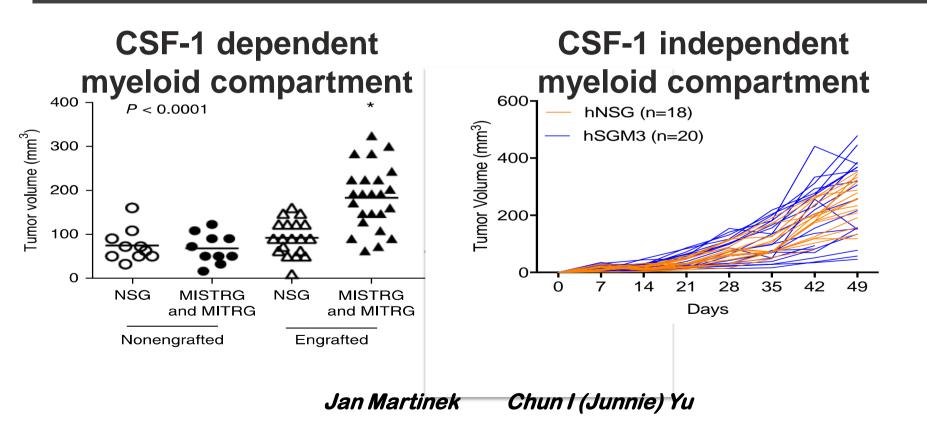
In vivo models of human myeloid cells and human melanoma

 MISTRG for the encoded proteins M-CSF (CSF-1), IL-3/GM-CSF, SIRPa and TPO in the Rag2-II2rg- background (Rongvaux, Martinek, Palucka... et al, Nat Biotech 2014).

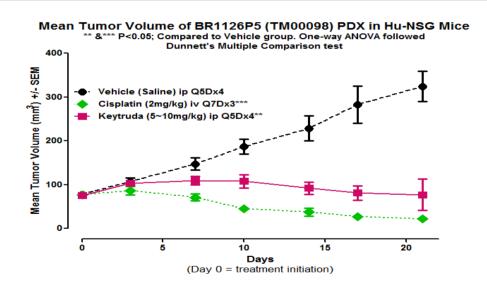

CSF-1-dependent myeloid compartment

 NSG-SGM3 strain, an immunodeficient strain that expresses transgenes for human SCF and GM-CSF/IL-3 (Billerbeck et al., Blood 2011; Coughlan et al., Stem Cells Dev 2016).

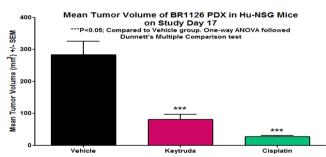
CSF-1-independent myeloid compartment


Development and function of human innate immune cells in a humanized mouse model

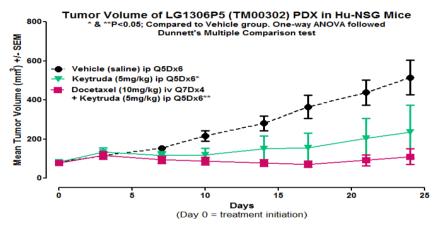
Anthony Rongvaux^{1,10}, Tim Willinger^{1,10}, Jan Martinek^{2,3}, Till Strowig^{1,9}, Sofia V Gearty¹, Lino L Teichmann^{4,5}, Yasuyuki Saito⁶, Florentina Marches², Stephanie Halene⁷, A Karolina Palucka², Markus G Manz⁶ & Richard A Flavell^{1,8}

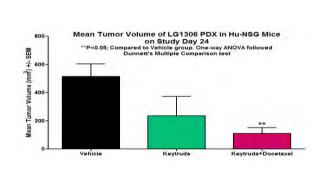


published online 16 March 2014; doi:10.1038/nbt.2858


Human myeloid cells differentially impact progression of "primary" experimental Me275 melanoma tumors in different models

Evaluating checkpoint inhibitors: Pembrolizumab and Cisplatin Inhibit Growth of the breast cancer BR1126 PDX Model in Hu-CD34 NSGTM PDX Mice

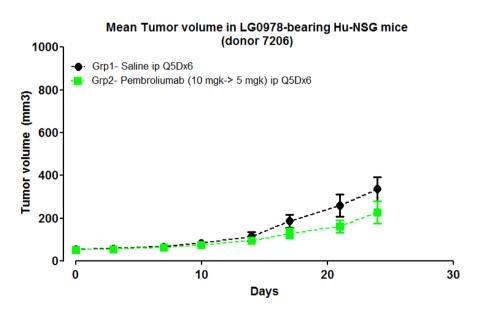

- HuCD45+ in Hu-NSG mice: >25%
- BR1126 PD-L1 surface expression: 56.9%

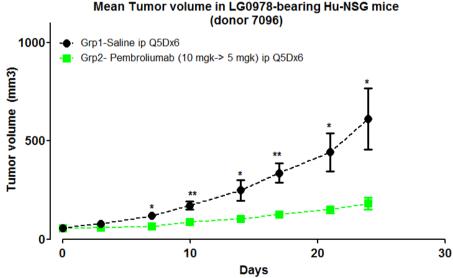


HLA match	CD34 [†] HPC donor			
Tumor	1	2	3	
BR1126	HLA-C, DPA1	HLA-A,DQA1, DPB1, DPA1	HLA-C, DPA1	

Jim Keck Lab, JAX Sacramento Wang et al FASEB J 2018

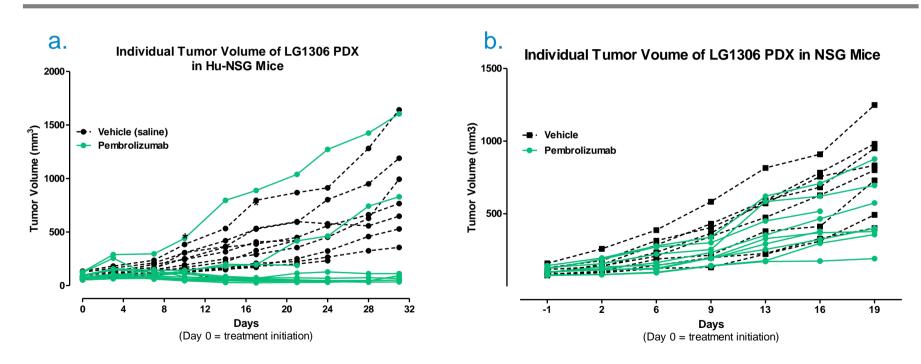
+/- Docetaxel on lung cancer LG1306 PDX Tumors in Hu-NSGTM Mice

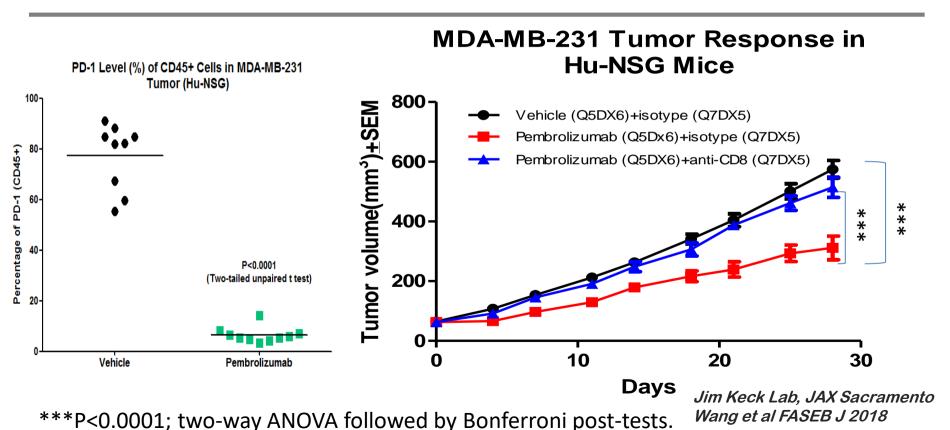



- Two or more CD34 donors
- Fresh tumor tissue engraftment
- HuCD45+ more than 20%
- LG1306 PD-L1 surface expression: 89.1%

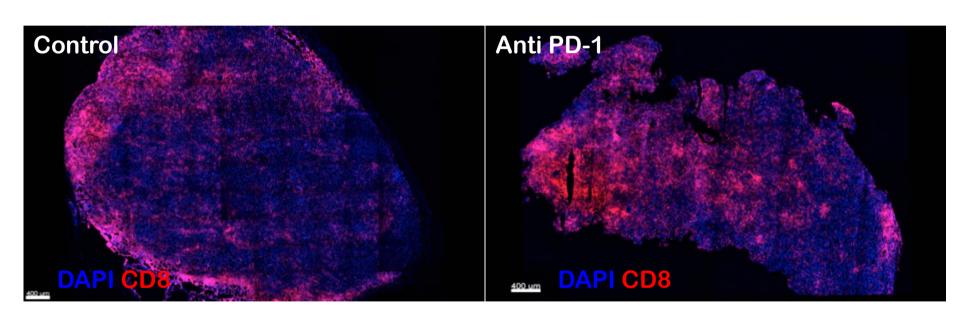
HLA match	CD34 [†] HPC donor			
Tumor	1 2			
LG1306	HLA-DRB4, DQA1, DQB1	No match		

Jim Keck Lab, JAX Sacramento Wang et al FASEB J 2018


Donor Variation in Response to Pembrolizumab Treatment in LG0978 Onco-Hu-NSGTM mice


Jim Keck Lab, JAX Sacramento Wang et al FASEB J 2018

Mechanisms: Efficacy of Pembrolizumab Depends on Human Immune Cells



Jim Keck Lab, JAX Sacramento Wang et al FASEB J 2018

Mechanisms: Efficacy of PD-1 blockade in humanized NSG mice bearing breast cancer CDX is CD8⁺T Cell Dependent

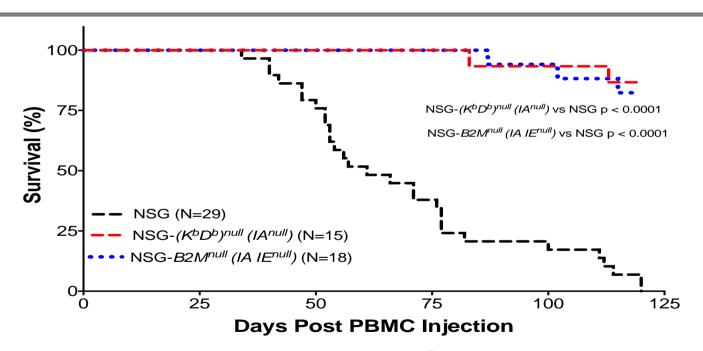
Redistribution of CD8 infiltrate after anti PD-1 treatment

Jim Keck Lab, JAX Sacramento Jan Martinek, Palucka Lab, JGM Connecticut Wang et al FASEB J 2018

Humanized mice: Current challenges and opportunities

Engraftment with HPCs

Lack of human cytokines impairs HSC growth & differentiation Source of HPCs: bone marrow, blood, iPS


Mouse hosts

Mouse myeloid cell function Murine MHC

Suboptimal lymphoid architecture and immune function

T cell education in context of mouse MHC (H2) antigens Poor lymph node development, lack of FDCs no germinal centers Low levels of humoral immunity, impaired Ig class switching

Host editing: NSG-(KD)^{null}(IA^{null}) and NSG-B2M^{null}(IA/IE)^{null} Mice show Increased Survival Following Injection with Human PBMC

8-12 week-old mice were injected IP with 1 x 10⁷ human PBMC

Courtesy of Lenny Shultz, JMG Bar Harbor

JAX Laboratories: Next Generation of Humanized Mice

CRISPR editing of the host and of human cells

Lenny Shultz, JMG Bar Harbor Jim Keck, JAX Sacramento Karolina Palucka, JGM Connecticut

Expressionof human factors

Cytokines

HLA molecules

Microenvironmental factors (SIRP α)

Hormones (prolactin)

Reduction of mouse immunity

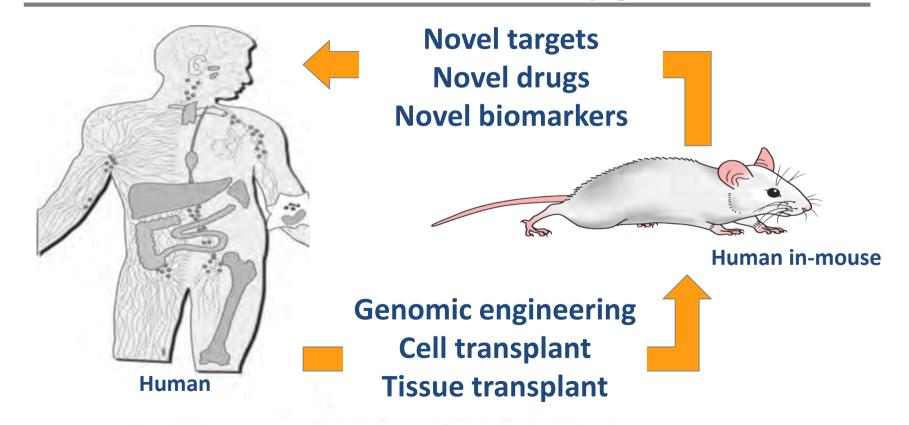
H2 molecules

Thymus

Macrophages

Granulocytes

Dendritic Cells


Chemokine receptors

Interferon receptors

Toll-like receptors

Role of human stroma

Emerging Model for Human Immunotherapy

Jan Martinek

Florentina Marches

Chun I Yu

Kyung In Kim

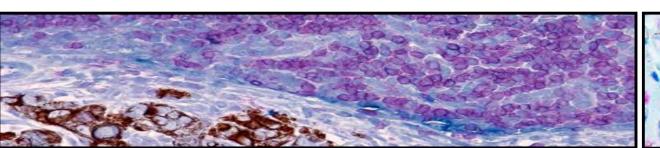
Tina Wu

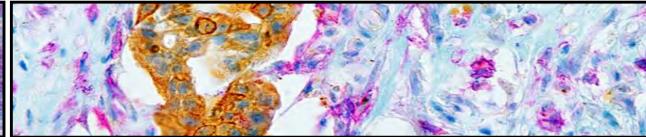
Vanessa Oliveira

Elaheh Ahmadzadeh

Deb Shurberg

Thanks to our patients; funding organizations and our collaborators


Jim Keck Susie Airhart Lenny Shultz Carol Bult Rick Maser


Anthony Rongvaux Michael Richard Flavell

Jacques Banchereau

Evaluating IO toxicities in syngeneic immunocompetent mouse models Lessons, Opportunities and Challenges

Gregory L. Beatty, MD PhD

Assistant Professor

Director of Translational Research, Pancreatic Cancer Research Center

Department of Medicine

Division of Hematology/Oncology

University of Pennsylvania School of Medicine

Disclosures

Consulting or Advisory Role:

Seattle Genetics

Aduro Biotech

AstraZeneca

Bristol-Meyers Squibb

Genmab

BiolineRx

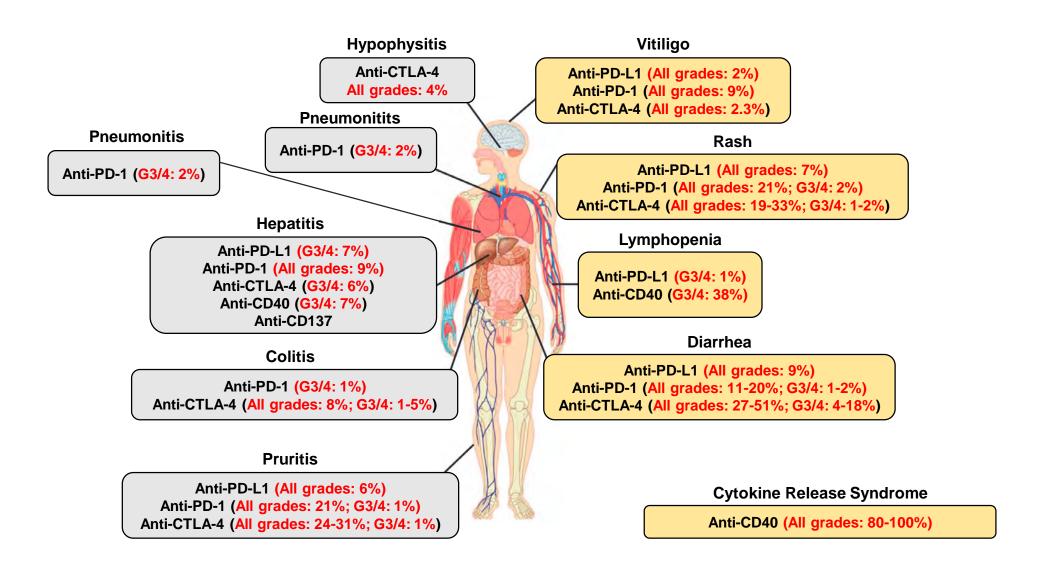
Research Funding:

Incyte

Bristol-Meyers Squibb

Verastem

Halozyme


Biothera

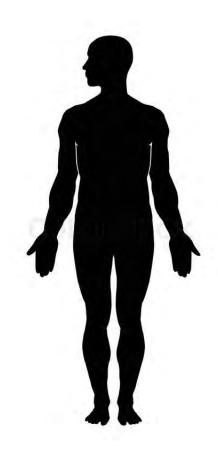
NewLink

Janssen

Immunotherapy can provoke a wide range of immune-related toxicities

Immune antagonists and Immune agonists

Modeling the immune system


Of Mice and Humans

Human Blood

50-70% neutrophils 30-50% lymphocytes

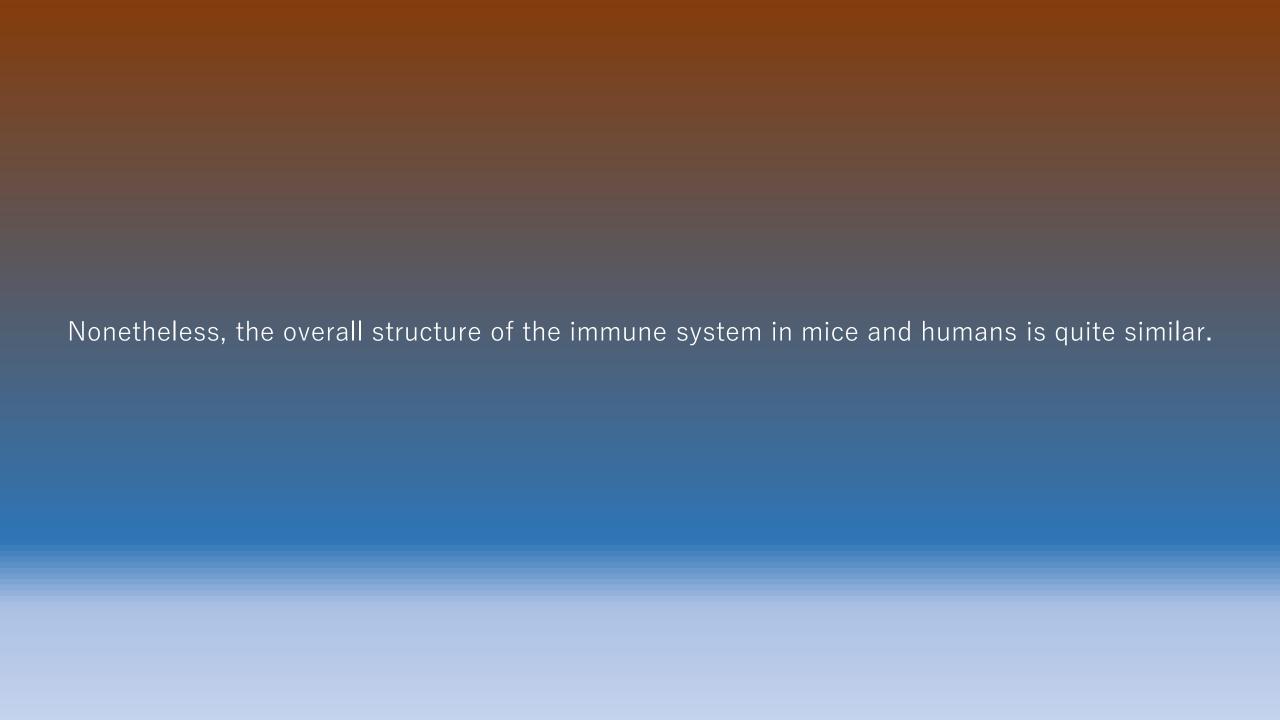
Neutrophils: rich in defensins

Human HSC c-kit^{low}, flt-3+

Mouse Blood

10-25% neutrophils 75-90% lymphocytes

Neutrophils: lack defensins


Mouse HSC

c-kithigh, flt-3neg

Known immunological differences between mice and humans

Of Mice and Humans

te 1. Summary of some known in	nmunological differences between mous	e and himan			Table I. Continues					
	Mouse	Human	Notes	Refs		Mouse	Human	Notes	Refs.	
Hemotopoiesis in spleen Presence of BALT Neutrophils in periph. blood	Active into adulthood Significant 10-25%	Ends before birth Largely absent in healthy tissue 50–70%		9 10	CXCR1 IL-8, NAP-2, ITAC, MCP-4, HCC-1, HCC-2, MPIF-1,	Absent Absent	Present Present	Chemokines	66, 67 66, 67	
Lymphocytes in periph blood Hemotopoietic stem cells	75–90% c-kit ^{high} , fit-3	30-50% c-kir ^{low} , flt-3+		10 11	PARC, eotaxin-2/3 MRP-1/2, lungkine, MCP-5	Present	Absent	Chemokines	66, 67	
TLR2 expression on PBL	Low (induced on many cells including T cells)	Constitutive (but not on T cells)	Binds lipopeptides	88	IFN-y effects in demyelinating disease	Protective in EAE	Exacerbates MS		4, 69- 70	
TLR3	Expressed on DC, Mac. Induced by LPS Expressed on all myeloid cells,	Expressed by DC. No LPS induction Expressed only on B cells,	Binds dsRNA Binds CpG	88, 89 90, 91	DTH lesions Constitutive MHC II on EC EC present Ag to CD4+ T	Neutrophil-rich Absent No	Lymphocyte-rich Present Yes	Memory T only	73, 74 80 75–77	
TLR10	plasmacytoid DC and B cells Pseudogene	plasmacytoid DC and N Widely expressed			1 cell depende e on CD2-ligand	Absent	Present High	CD2 ligand	82 82	
Sialic acid Neu5GC expression CD33	Widespread Expressed on granulocytes	Absent Expressed on monocytes	Binds pathogens Binds sialic acids	92 93	interactions CD2-ligand intera	Lower affinity, with CD48	Higher affinity, with CD58		82	
eukocyte defensins Paneth cell defensins	Absent Processed by MMP7. Stored pre-	Present Stored as pro-form. Processed by	neutrophils	14 94, 95	CD40 on EC Vascularized graft olerogenic?	Absent Yes	Present No		83, 84 5	
Paneth cell defensins	processed At least 20	trypsin Two		13	Microchimerism i duces graft tolerance?	High success rate	Low success (expts. in non-human primates)		7	
Macrophage NO	Induced by IFN-y and LPS	Induced by IFN-α/β, IL-4" anti- CD23		17	Passenger lepit cytes	Account for graft immunogenicity	Do not account for graft immunogenicity		6	
CD4 on macrophages Predominant T cells in skin and mucosa	Absent γ/δ TCR (dendritic epidermal T cells—DETC)	Present α/β TCR.		96 40						
y/δ T cells respond to phospho- antigens	No	Yes		97	· \\					
CD1 genes NK inhibitory Rs for MHC 1 NKG2D ligands	CD1d Ly49 family (except Ly49D and H) H-60, Rae1β	CD1a,b,c,d KIR MIC A, MIC B, ULBP	NK activating Rs	41 20 98	//					
fMLP receptor affinity ForRI	Low Absent	High Present	and meaning as	99 21	/ _					
FCYRIIA, C	Absent	Present		22	\					
Serum IgA. Ig classes	Mostly polymeric IgA, IgD, IgE, IgG1, IgG2a*, IgG2b, IgG3, IgM * absent in C57BL/6, /10, SJL and NOD mice, which have IgG2c	Mostly monomeric, IgA1, IgA2, IgD, IgE, IgG1, IgG2, IgG3, IgG4, IgM		21 23		CD40 on EC		Mouse Absent		<u>Human</u> Presen
ig CDR-H3 region BLNK deficiency Btk deficiency A5 deficiency	Shorter, less diverse IgM ^{high} B cells in periphery Normal pre-B and immature B "leaky" block at pro-B to pre-B	Longer, more diverse No peripheral B cells Blocks pro-B to pre-B transition Blocks pro-B to pre-B transition		100 25, 26 28 28	L					
CD38 expression on B cells	transition Low on GC B cells, off in plasma	High on GC B cells and plasma cells		29						
B cell CD5 and CD23 expression	cells Mutually exclusive	Co-expression		29						
IL-13 effect on B cells Thy 1 expression	None Thymocytes, peripheral T cells	Induces switch to IgE Absent from all T cells, expressed on neurons		24 32						
Effect of γ_c deficiency	Loss of T, NK, and B cells	Loss of T, NK, but B cell numbers normal	_	33, 34						
Effect of Jak3 deficiency Effect of IL-7R, deficiency ZAP70 deficiency	Phenocopies γ_c deficiency Blocks T and B cell development No CD4 $^+$ or CD8 $^+$ T cells	Phenocopies γ _c deficiency Only blocks T cell development No CD8 T but many none CD4 T				• • • • •	Mou	<u>se</u>		<u>Human</u>
aspase 10	Embryonic lethal Absent	Viable			Th expressio	n of IL-10	Th2			Th1 and Th2
differentiation The expression of IL-1 IL-4 and IFN-y expression	No The state of th	Sometimes both		51						
cultured Th 728 expression T cells	On 100% of CD4 ⁺ and CD8 ⁺ Normal B cell numbers and function.	On 80% of CD4 ⁺ , 50% of CD8 ⁺ B cells immature and severely	Possibly age-related	54 55–57						
37-H3 effects on T cells	normal IgM levels Inhibits activation	reduced in number, low IgM Promotes activation		101-2						
CAM3 P-selectin promoter	Absent Activated by TNF and LPS	Present Unresponsive to inflammation	DC-SIGN ligand	103-4 58						
HyCAM	Present	Absent		105						
MHC II expression on T cells Vol.3 K channel on T cells	Absent Absent	Present Present	Regulates Ca flux	59-61 64, 65						
MUC1 on T cells	Absent	Present	Regulates Ca mux Regulates migration?							
Granulysin	Absent	Present	In CTL	43						
14.00			(Table	continues)						

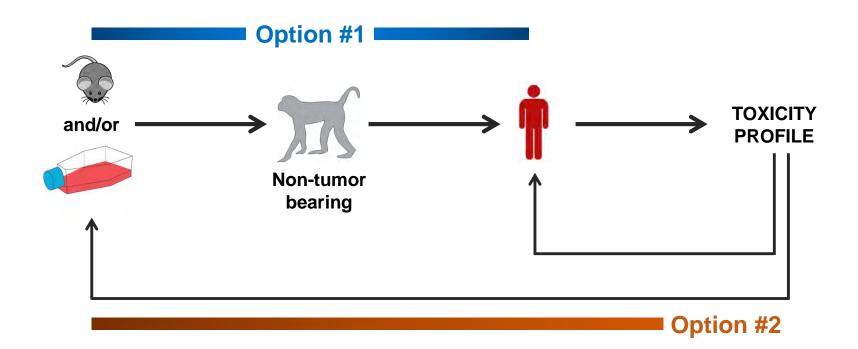
Syngeneic and Transgenic Models Advantages and Disadvantages in their use for studying IO toxicities

Transplantable Tumor Models	Spontaneous Tumor Models	Non-tumor models
Examples:MC38 subcutaneous implantationPan02 orthotopic implantation	 Examples: Kras^{G12D/+}; Trp53^{R172H/+}; Pdx-1 Cre (KPC) MMTV-PyMT 	Examples:Wild-type micePD-1 knockout mice, etc

Syngeneic and Transgenic Models Advantages and Disadvantages in their use for studying IO toxicities

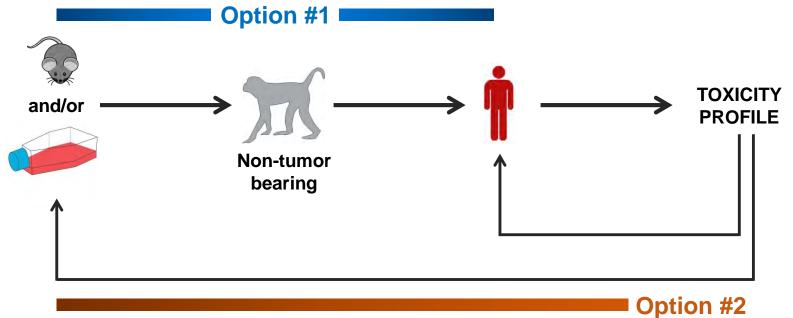
Transplantable Tumor Models	Spontaneous Tumor Models	Non-tumor models
Examples:MC38 subcutaneous implantationPan02 orthotopic implantation	Examples: • Kras ^{G12D/+} ; Trp53 ^{R172H/+} ; Pdx-1 Cre (KPC) • MMTV-PyMT	Examples:Wild-type micePD-1 knockout mice, etc
Advantages:Rapid/reproducible tumor growthCell lines can be genetically-modified	 Advantages: Stochastic tumor development faithfully recapitulates tumor microenvironment Emergence of immune tolerance mechanisms 	Advantages:Repeated long-term administration of IO drugs is feasible

Syngeneic and Transgenic Models Advantages and Disadvantages in their use for studying IO toxicities


Transplantable Tumor Models	Spontaneous Tumor Models	Non-tumor models
Examples:MC38 subcutaneous implantationPan02 orthotopic implantation	 Examples: Kras^{G12D/+}; Trp53^{R172H/+}; Pdx-1 Cre (KPC) MMTV-PyMT 	Examples:Wild-type micePD-1 knockout mice, etc
Advantages:Rapid/reproducible tumor growthCell lines can be genetically-modified	 Advantages: Stochastic tumor development faithfully recapitulates tumor microenvironment Emergence of immune tolerance mechanisms 	Advantages:Repeated long-term administration of IO drugs is feasible
 Disadvantages: Implantation may produce inflammation and immune activation Limited window for intervention and monitoring Mouse surrogates for IO drugs may not reflect human biology 	 Disadvantages: Tumor latency period can be long Costly Tumor heterogeneity increases complexity of interpreting responses Mouse surrogates for IO drugs may not reflect human biology 	 Disadvantages: Effects of tumor development on IO drug toxicities cannot be examined Mouse surrogates for IO drugs may not reflect human biology

Incorporating mouse models into the study of IO toxicities Predictive vs Informative

How should we incorporate preclinical models for the study of IO toxicities?


Option 1: Evaluate for potential toxicities in preclinical setting to inform translation and monitoring in patients.

Option 2: Identify toxicities that emerge after translation into patients and study them.

Incorporating mouse models into the study of IO toxicities Predictive vs Informative

	Advantages	Disadvantages
Option 1: Increased monitoring for toxicities in preclinical models	Mechanistically important findings may emerge May inform toxicities for increased monitoring	More extensive preclinical modeling – longer time to development. Toxicities may not mirror those seen in humans How to standardize models used? Heterogeneity between models?
Option 2: Model clinically-relevant toxicities to inform biology and interventions	Preclinical studies are scientifically focused	Which models to use? Is there a non-primate drug surrogate? Mouse/human biology may be distinct

Example 1: Modeling irAEs related to anti-CTLA-4 therapy

	lpilimumab (n = 1,498) (%)			
Toxicity	All Grades	Grade 3/4		
GI (e.g. enterocolitis)	33	9.1		
Pneumonitis	<1	<1		
Hepatitis	1.6	1.1		
Dermatologic	45	2.6		
Hypophysitis	2.7	2.1		
Thyroiditis	1.8	<1		
Nephritis	<1	<1		

WARNING: IMMUNE-MEDIATED ADVERSE REACTIONS

See full prescribing information for complete boxed warning.

YERVOY can result in severe and fatal immune-mediated adverse reactions. These immune-mediated reactions may involve any organ system; however, the most common severe immune-mediated adverse reactions are enterocolitis, hepatitis, dermatitis (including toxic epidermal necrolysis), neuropathy, and endocrinopathy. The majority of these immune-mediated reactions initially manifested during treatment; however, a minority occurred weeks to months after discontinuation of YERVOY.

Permanently discontinue YERVOY and initiate systemic high-dose corticosteroid therapy for severe immune-mediated reactions. (2.5)

Assess patients for signs and symptoms of enterocolitis, dermatitis, neuropathy, and endocrinopathy and evaluate clinical chemistries including liver function tests, adrenocorticotropic hormone (ACTH) level, and thyroid function tests at baseline and before each dose. (5.1, 5.2, 5.3, 5.4, 5.5)

Questions in the field:

Predictability	Timing	Mechanisms of Pathology	Treatment/Prevention
1 1 0 0110 101011111		meenanisins of Fathers	110001110110110101

Lessons from CTLA-4 antibody development

1995

Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. *Immunity* 3:541 (1995)

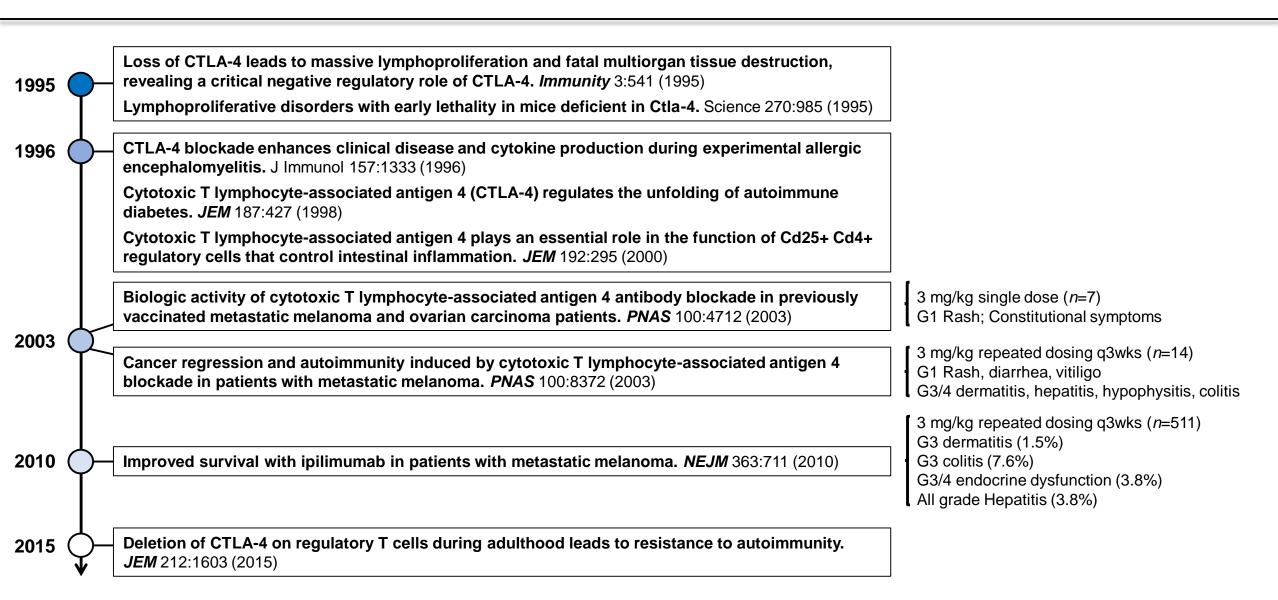
Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985 (1995)

1996

CTLA-4 blockade enhances clinical disease and cytokine production during experimental allergic encephalomyelitis. J Immunol 157:1333 (1996)

Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulates the unfolding of autoimmune diabetes. *JEM* 187:427 (1998)

Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of Cd25+ Cd4+ regulatory cells that control intestinal inflammation. *JEM* 192:295 (2000)

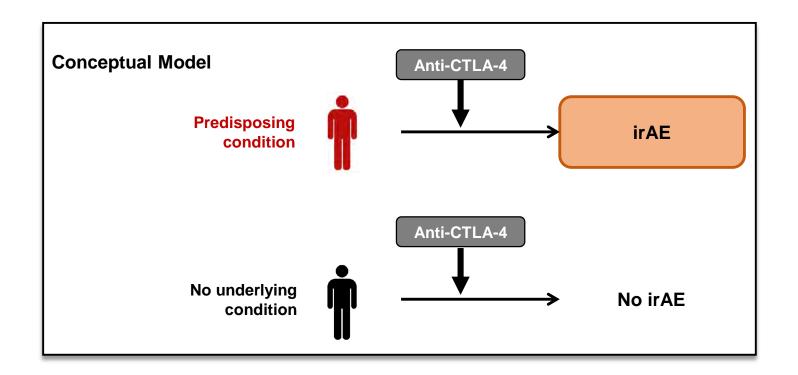

Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. *PNAS* 100:4712 (2003)

3 mg/kg single dose (*n*=7) G1 Rash; Constitutional symptoms

2003

"before clinical use, MDX-010 anti-CTLA-4 Ab underwent extensive evaluation in cynomologus monkeys and did not cause any notable clinical or pathological toxicity at repeated i.v. doses from 3 mg/kg to 30 mg/kg in acute and chronic toxicology studies (unpublished data from Medarex)."

Lessons from CTLA-4 antibody development



Lessons from preclinical models evaluating CTLA-4

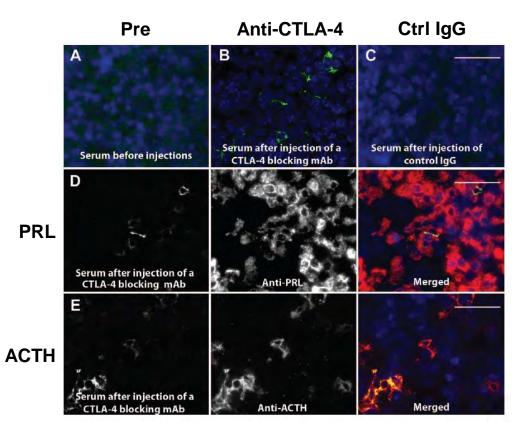
Transgenic models targeting the same molecule can produce widely divergent pathological outcomes


Conditional deletion during adulthood vs genetic knockout from birth

CTLA-4 blockade can impact the biology of non-malignant inflammatory conditions

A mouse model of CTLA-4 induced hypophysitis Repeated dosing in non-tumor bearing mice

Pituitary Expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med 6:230ra45 (2014)


CTLA-4 blockade induces hematopoietic cell infiltration of pituitary gland

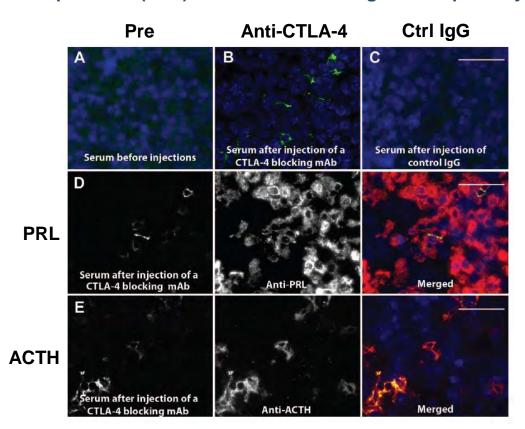
(No infiltration was seen in thyroid, liver, colon or skin)

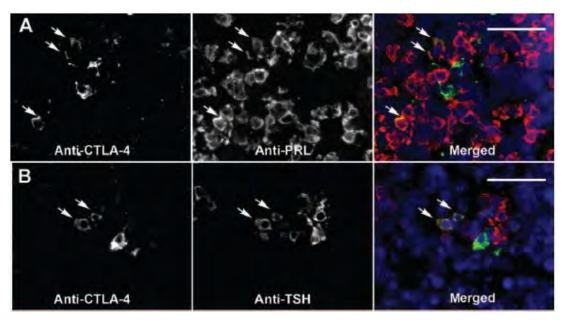
A mouse model of CTLA-4 induced hypophysitis Repeated dosing in non-tumor bearing mice

Pituitary Expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med 6:230ra45 (2014)

CTLA-4 blocking induces serum antibodies with specificity for prolactin (PRL)- and ACTH-secreting cells in pituitary

ID	Sex	Age	Cancer	Clinical	Overall pituitary antibodies		Cell-specific pituitary antibodies				
		(years)	type	hypophysitis	Before Ipi	After Ipi		FSH-secreting cells	ACTH-secreting cells	GH-secreting cells	PRL-secreting cells
1	М	53	Melanoma	Yes	Absent	Present	Positive	Positive	Negative	Negative	Negative
2	M	68	Melanoma	Yes	Absent	Present	Positive	Positive	Negative	Negative	Negative
3	M	59	Melanoma	Yes	Absent	Present	Positive	Negative	Positive	Negative	Negative
4	F	34	Melanoma	Yes	Absent	Present	Positive	Positive	Positive	Negative	Negative
5	F	58	Melanoma	Yes	Absent	Present	Positive	Negative	Negative	Negative	Negative
6	M	72	Melanoma	Yes	Absent	Present	Positive	Positive	Positive	Negative	Negative
7	M	65	Prostate	Yes	Absent	Present	Positive	Positive	Negative	Negative	Negative


<u>7 of 7 patients</u> with CTLA-4 induced **hypophysitis** show pituitary antibodies after beginning ipilimumab, whereas <u>13 of 13 patients</u> without hypophysitis lacked pituitary antibodies


Anti-CTLA4 (UC10-4F10-11, hamster anti-mouse IgG1k mAb); PRL, prolactin; ACTH, adrenal corticotropic hormone

A mouse model of CTLA-4 induced hypophysitis Repeated dosing in non-tumor bearing mice

Pituitary Expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med 6:230ra45 (2014)

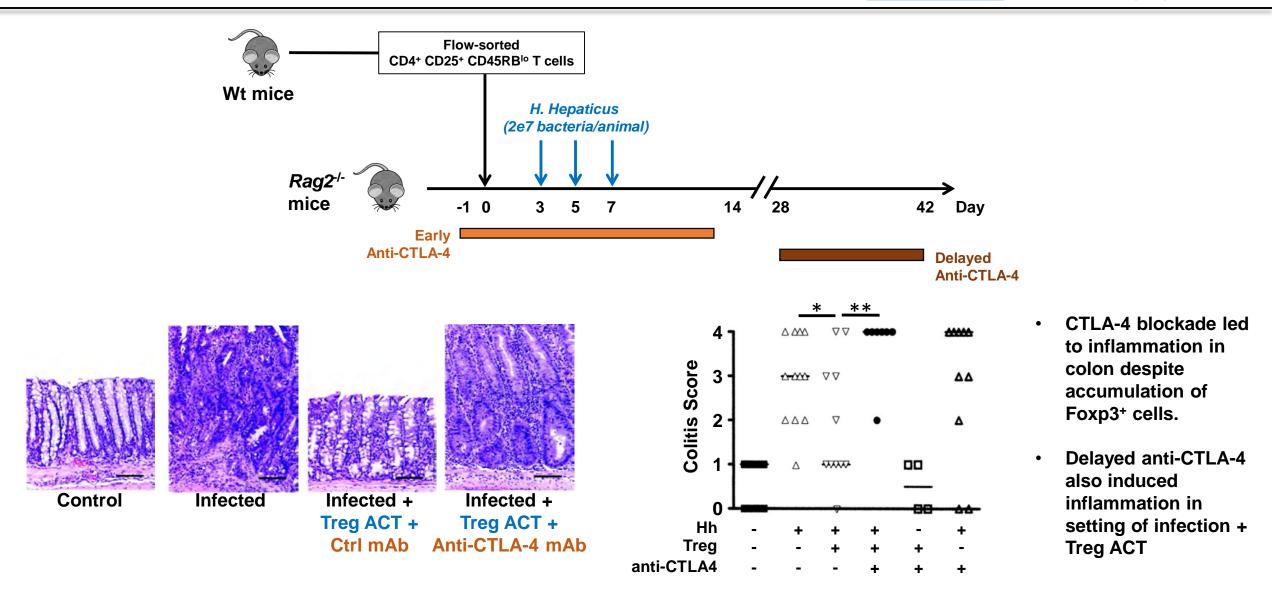
CTLA-4 blocking induces serum antibodies with specificity for prolactin (PRL)- and ACTH-secreting cells in pituitary

A subset of pituitary gland cells expressing prolactin (PRL) and TSH express CTLA-4.

Authors proposed that CTLA-4 antibodies activates complement in pituitary leading to tissue destruction.

Anti-CTLA4 (UC10-4F10-11, hamster anti-mouse IgG1k mAb); PRL, prolactin; ACTH, adrenal corticotropic hormone

A mouse model of CTLA-4 induced hypophysitis Repeated dosing in non-tumor bearing mice


Pituitary Expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med 6:230ra45 (2014)

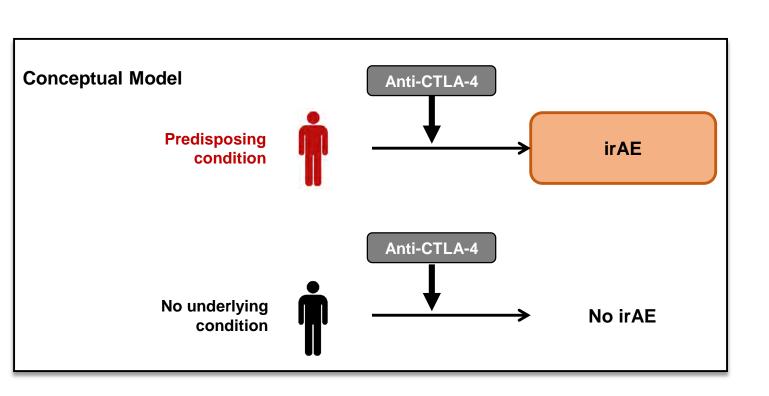
Model Limitations:

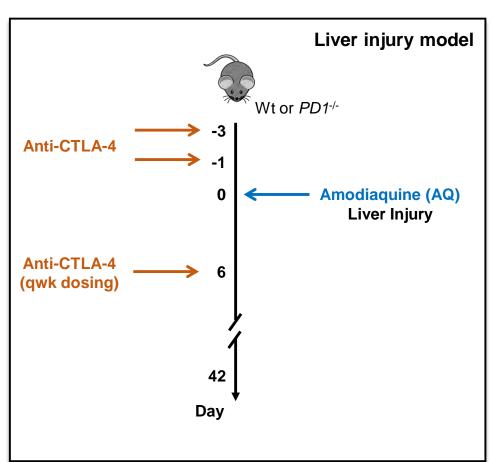
- 1. Lack of direct evidence for CTLA-4 antibodies binding cognate antigen in pituitary
- 2. Unclear if model of secondary hypophysitis in mice mimics the human counterpart

A mouse model of CTLA-4 induced colitis Unmasking subclinical pathology with CTLA-4 blockade?

<u>Infect Immun.</u> 2008 Dec;76(12):5834-42

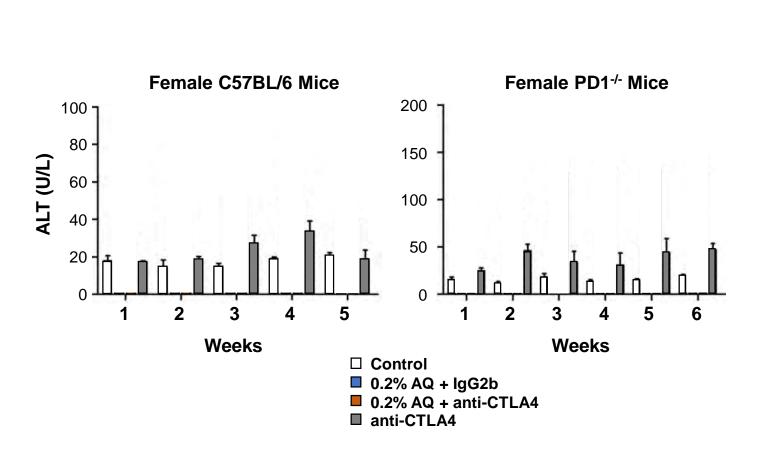
Notes: Rag2^{-/-} and wt mice were on a 129/SvEv background; hamster anti-mouse CTLA-4 mAb (UC10-4F10-11, 100 μg/animal/day i.p.); ACT, adoptive cell transfer

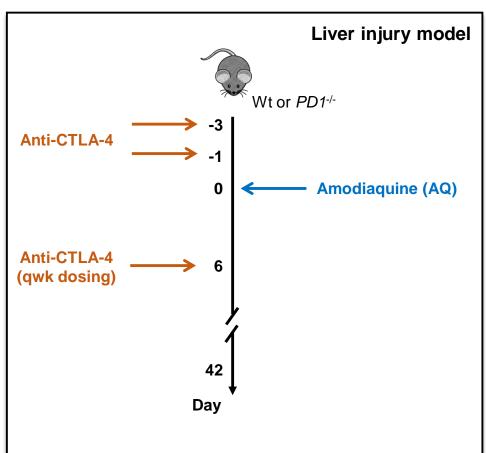

A mouse model of CTLA-4 induced colitis Unmasking subclinical pathology with CTLA-4 blockade?


Cytotoxic T-lymphocyte-associated antigen 4 blockade abrogates protection by regulatory T cells in a mouse model of microbially induced innate immune-driven colitis. Infect Immun 76:5834 (2008)

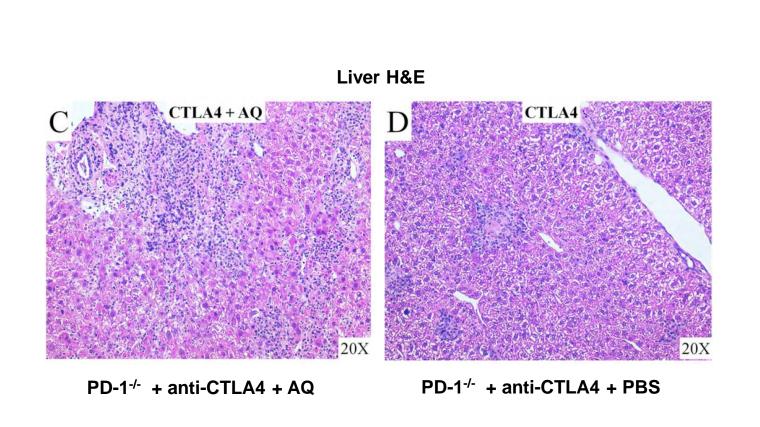
Model Limitations:

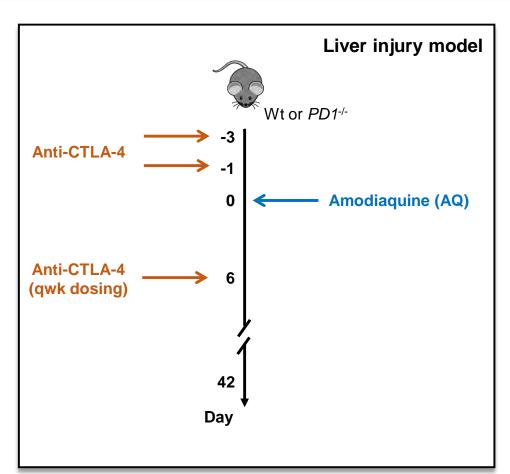
- 1. Immunocompromised model (Rag2-/-)
- 2. H. Hepaticus is a murine enterohepatic pathogen


Conceptual model Predisposition as a prerequisite for irAE?



Treatment of PD-1(-/-) mice with amodiaquine and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients. Hepatology 61:1332 (2015)


Liver injury predisposes to chronic hepatitis Impact of dual CTLA-4 and PD-1 disruption



Treatment of PD-1(-/-) mice with amodiaquine and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients. Hepatology 61:1332 (2015)

Liver injury predisposes to chronic hepatitis Impact of dual CTLA-4 and PD-1 disruption

Treatment of PD-1(-/-) mice with amodiaquine and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients. Hepatology 61:1332 (2015)

Liver injury predisposes to chronic hepatitis Impact of dual CTLA-4 and PD-1 disruption

Treatment of PD-1(-/-) mice with amodiaquine and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients. Hepatology 61:1332 (2015)

Model Limitations:

- 1. Does PD-1 blockade reproduce PD-1 genetic deletion?
- 2. Amodiaquine is not a common drug used in cancer patients

Example 2: Modeling irAEs related to anti-PD1 therapy

	Anti-PD1 (%)				
Toxicity	All Grades	Grade 3/4			
Pruritis	14-19	0			
Rash	13-26	0-1			
Diarrhea	1-3	1-2			
Colitis	1-3	0.5-2			
Elevated ALT	1-4	0.4-1			
Elevated AST	2-4	0.4-4			
Hypothyroidism	7-9	0			
Hypophysitis	0-1	0-0.4			
Pneumonitis	1-2	0.3-0.4			

Oncologist. 2016 Oct; 21(10): 1230–1240.

Management of Adverse Events Following Treatment With Anti-Programmed Death-1 Agents

Lessons from PD-1 preclinical studies

1999

Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. *Immunity* 11:141 (1999)

"Aged C57BL/6(B6)-PD-1^{-/-} congenic mice spontaneously developed characteristic lupus-like proliferative <u>arthritis</u> and <u>glomerulonephritis</u> with predominant <u>lgG3</u> deposition...Identified a role for PD-1 in regulating GVHD. <u>Concluded</u> that PD-1 is involved in the maintenance of peripheral <u>self-tolerance</u> by serving as a negative regulator of immune responses."

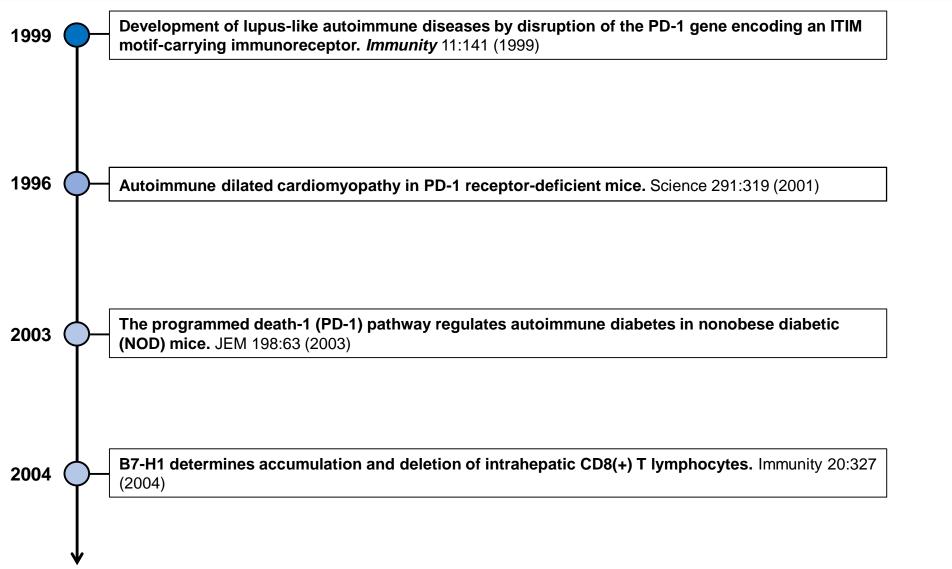
1996

Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319 (2001)

"BALB/c mice *PD-1* -/- develop <u>dilated cardiomyopathy</u> with severely impaired contraction and sudden death by <u>congestive heart failure</u>. Affected hearts showed diffuse deposition of immunoglobulin G (IgG) on the surface of cardiomyocytes. <u>Concluded</u> PD-1 contributes to <u>prevention of autoimmune diseases</u>."

2003

The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. JEM 198:63 (2003)


"PD-1 or PD-L1 but not PD-L2 blockade rapidly precipitated <u>diabetes</u> in prediabetic female nonobese diabetic (NOD) mice regardless of age (from 1 to 10-wk-old), although it was <u>most pronounced in the older mice</u>. <u>Concluded</u> PD-1-PD-L1 pathway has a central role in regulation of induction and progression of autoimmune diabetes in NOD mouse"

2004

B7-H1 determines accumulation and deletion of intrahepatic CD8(+) T lymphocytes. Immunity 20:327 (2004)

"PD-L1-/- C57BL/6 mice show <u>accumulation of CD8+ T lymphocytes in the liver</u>. No liver pathology seen in 14 mo old PD-L1 KO mice. PD-L1 KO mice compare to wt mice demonstrate <u>increased liver damage in model of experimental</u> <u>autoimmune hepatitis</u> involving systemic ConA injection. <u>Concluded</u> PD-L1 regulates intrahepatic CD8 T cell accumulation an may contribute to inflammation, autoimmune diseases and tolerance in the liver"

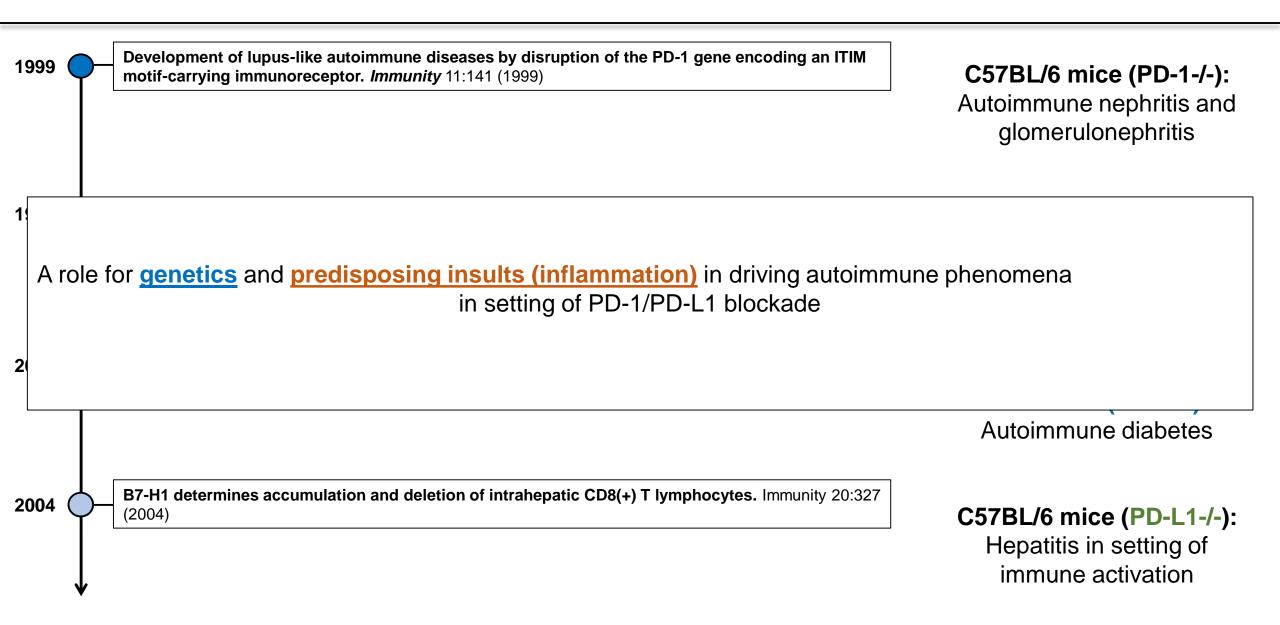
Lessons from PD-1 preclinical studies

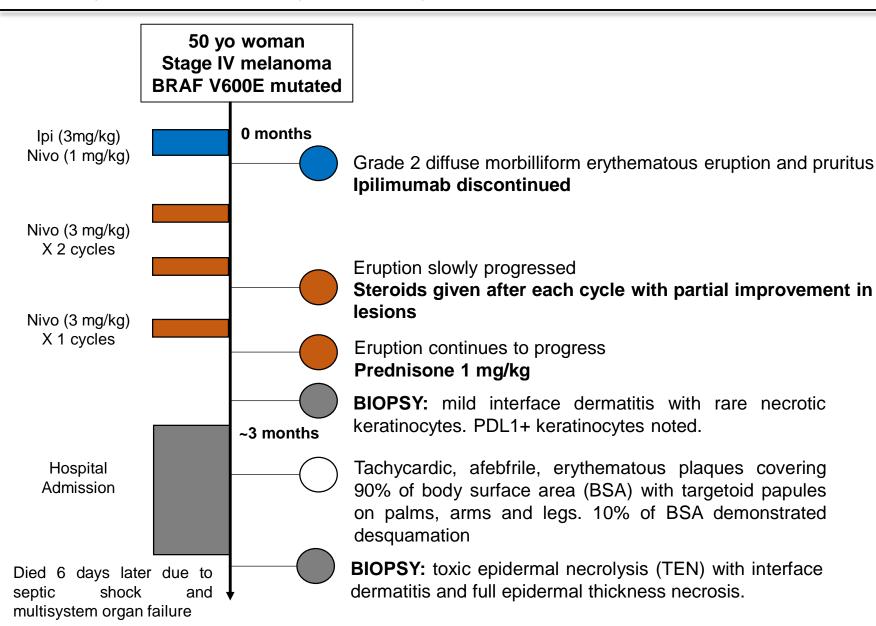
C57BL/6 mice (PD-1-/-):
Autoimmune nephritis and

Autoimmune nephritis and glomerulonephritis

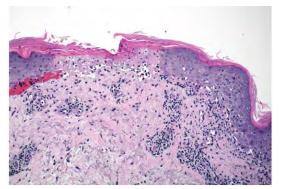
BALB/c mice (PD-1-/-):

Autoimmune dilated cardiomyopathy


NOD mice (PD-1-/-):


Autoimmune diabetes

C57BL/6 mice (PD-L1-/-):


Hepatitis in setting of immune activation

Lessons from PD-1 preclinical studies

A model to study rash from anti-PD1 therapy Disrupting peripheral tolerance against keratinocytes?

Experimental Model OVA (SIINFEKL)-specific TCR CD8+ T cells OT-1 mice K14-mOVA mice Day Wild-type PD-1 KO Fas KO

Note: Keratinocytes express PD-L1

Recipient OT-I cell IFNγ K14-mOVA 574.0 + 229.4Wild-type K14-mOVA PD-1-KO 1527.9 ± 599.6* K14-mOVA 176.5 ± 17.4** Fas-KO Wild-type $21.2 \pm 0.3**$

8 9 10 11 12 13 14

0% death rate

0% death rate

80% death rate

Note: IL-6 and TNF also increased in PD-1 KO condition. Pathology blocked in setting of IFN, IL-6, and TNF deficiency

Days after transfer

K14-mOVA: To mouse that expressed chicken ovalbumin (OVA) in skin and mucosal epithelia under control of the keratin 14 promoter

Programmed cell death 1 (PD-1) regulates the effector function of CD8 T cells via PD-L1 expressed on target keratinocytes. J of Autoimmunity 53:1-9 (2014)

→ Wild-type OT-1 (K14-mOVA

PD-1-KO OT-1 (K14-mOVA)

Fas-KO OT-1 (K14-mOVA)

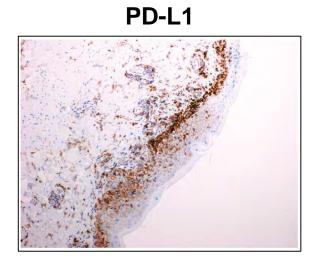
15

10

-30

-35

B6

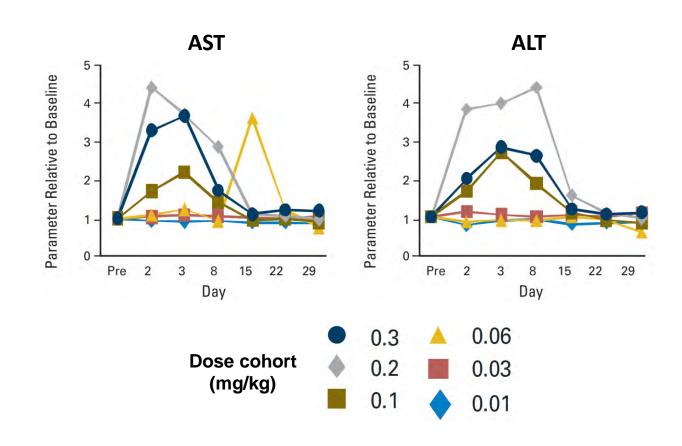

of initial weight

Rash from anti-PD1 therapy Disruption of peripheral tolerance to keratinocytes

50 yo woman Stage IV melanoma BRAF V600E mutated

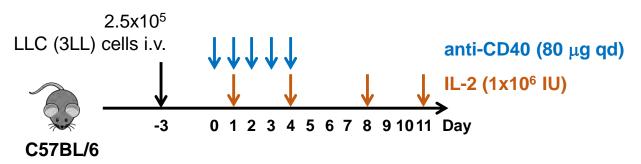
H&E

A model to study rash from anti-PD1 therapy Disrupting peripheral tolerance against keratinocytes?

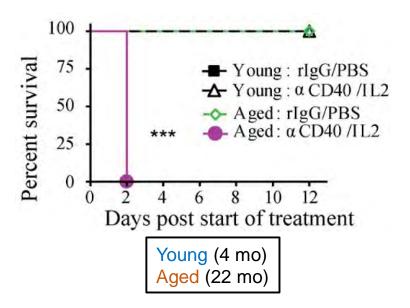

Programmed cell death 1 (PD-1) regulates the effector function of CD8 T cells via PD-L1 expressed on target keratinocytes. J of Autoimmunity 53:1-9 (2014)

Model Limitations:

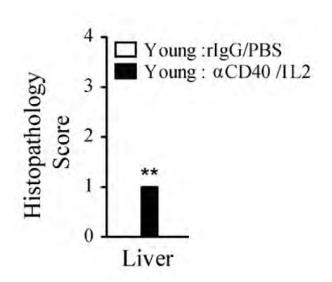
- 1. Strong model antigen (OVA)
- 2. Will anti-PD1 reproduce same biology seen with genetic deletion used for ACT?


Example 3: Immune agonists targeting CD40 can induce hepatitis Monitoring for acute toxicities and dependence on age

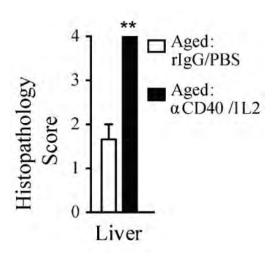
- CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily
- CD40 regulates immune activation and can mediate tumor apoptosis
- CD40 is expressed by dendritc cells, B cells, monocytes and other non-hematopoietic cells (e.g. endothelial cells, platelets)
- CD40 signaling activates antigen presenting cells
- Agonistic CD40 antibodies induce a cytokine release syndrome in patients, hepatitis, and thrombocytopenia


Mechanisms underlying toxicity with CD40 agonists Impact of age

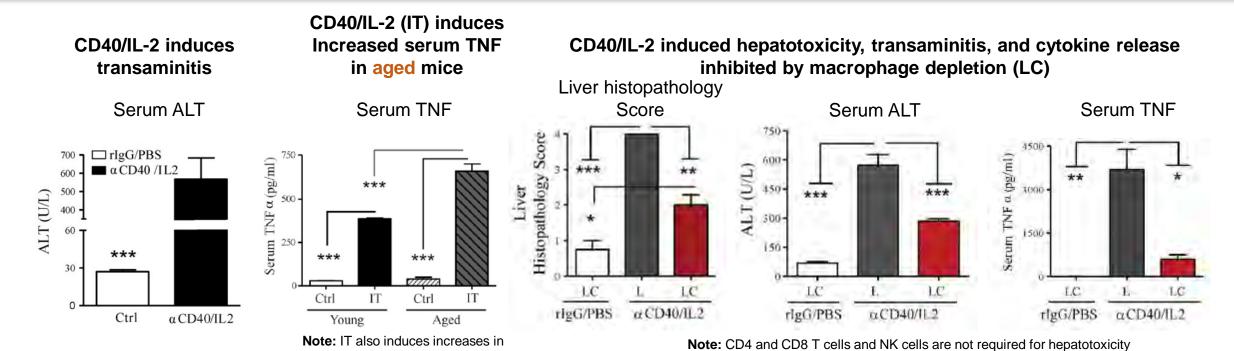
Experimental Model



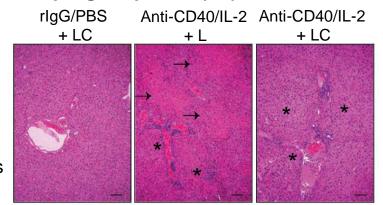
Goal of study: Define the impact of age on the efficacy of anti-CD40/IL-2 therapy.


CD40/IL-2 induces lethal toxicity in aged but not young mice

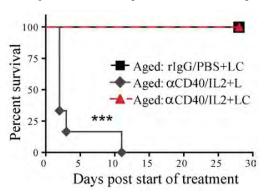
CD40/IL-2 induces minimal hepatoxicity in young mice



CD40/IL-2 induces <u>severe</u> hepatoxicity in aged mice

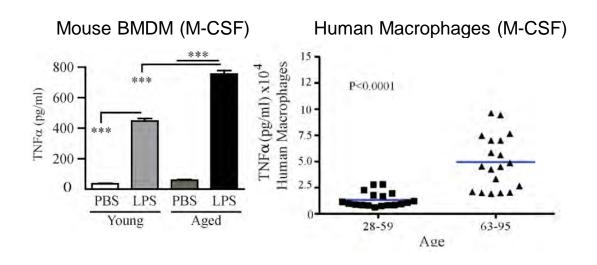


J Exp Med. 2013 Oct 21;210(11):2223-37

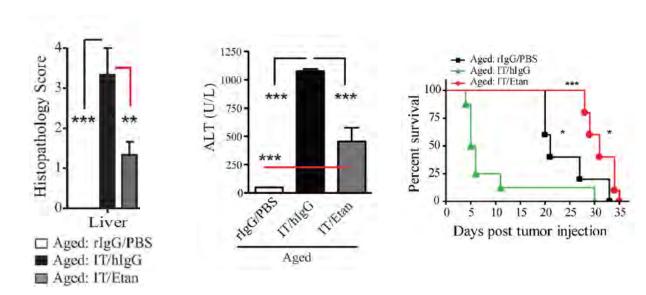

Mechanisms underlying toxicity with CD40 agonists Dependence on age

Macrophage depletion (LC) reverses CD40/IL-2 induced hepatotoxicity and lethality

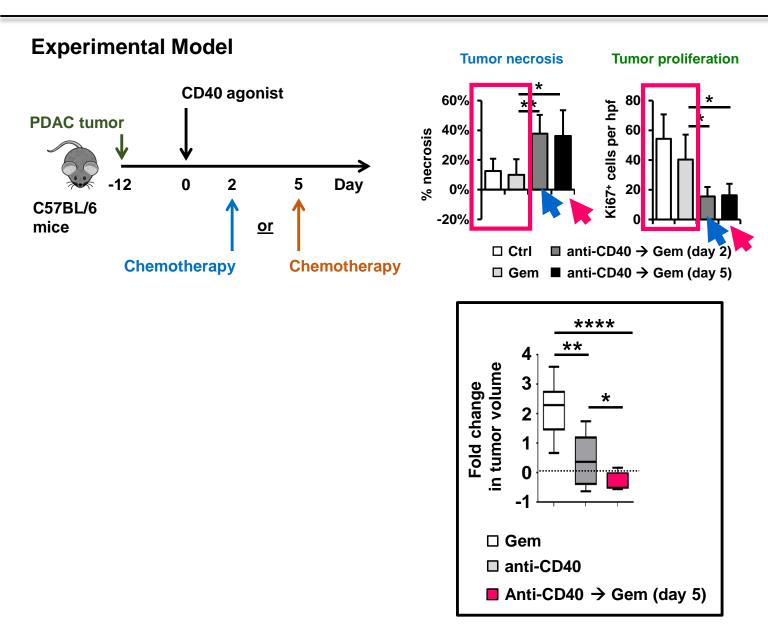
IL-6 and IFN_γ

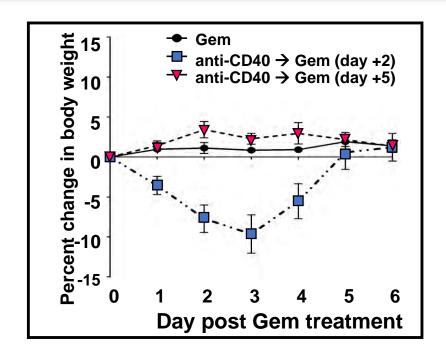

LC, clodronate liposomes J Exp Med. 2013 Oct 21;210(11):2223-37

*, Lymphocytic infiltrates

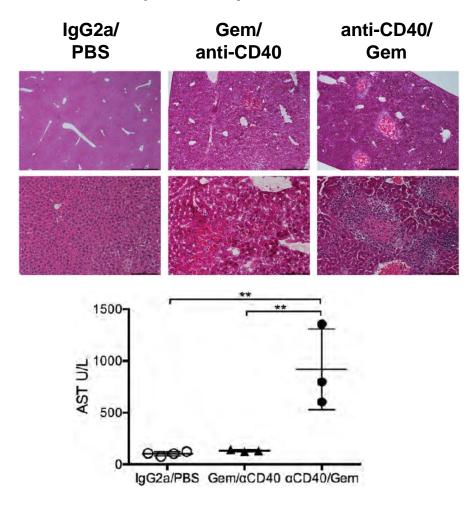

→, necrosis

Mechanisms underlying toxicity with CD40 agonists Dependence on age


Macrophages from aged vs young hosts secrete increased cytokines (TNF, IL-6)



Etanercept (Anti-TNF) reverses CD40/IL-2 toxicity without impacting anti-tumor efficacy


CD40 agonists condition for enhanced hepatotoxicity from chemotherapy Timing of chemotherapy administration is critical

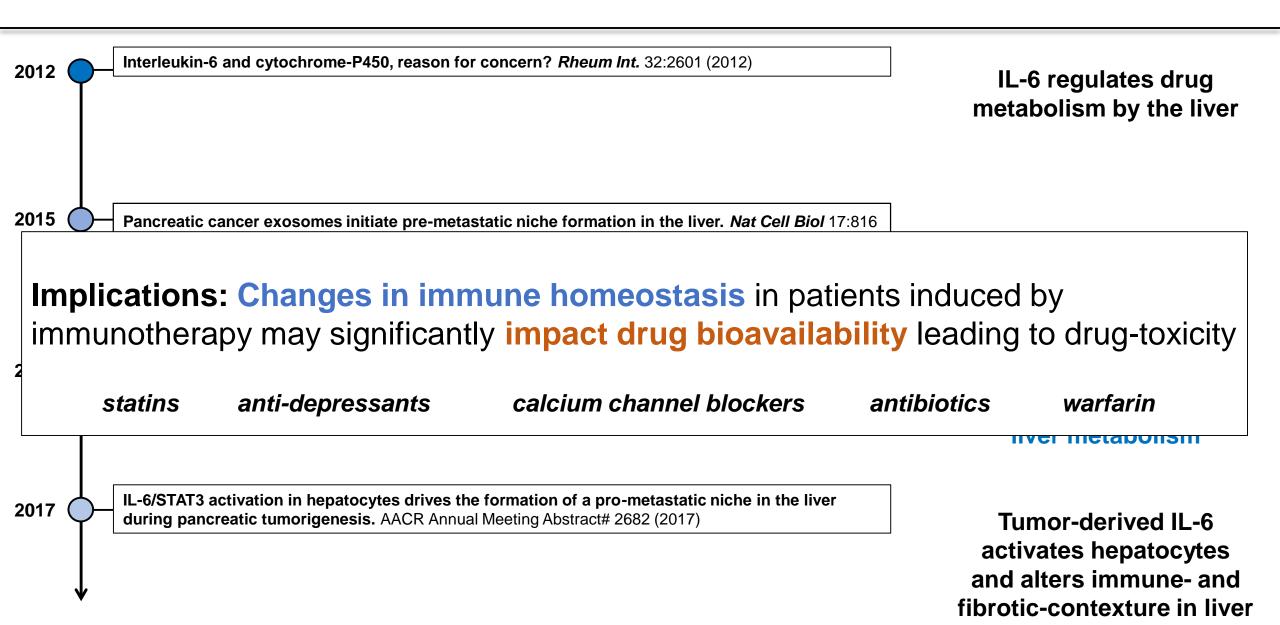


CD40 agonists condition for enhanced hepatotoxicity from chemotherapy A role for macrophages

Chemotherapy administered 2 days after a CD40 agonist induces lethal hepatotoxicity with associated transaminitis¹

Hepatotoxicity induced by chemotherapy after a CD40 agonist is blocked by CSF1R antibodies in tumor-bearing mice¹

¹J Immunol. 2016 Jul 1; 197(1): 179–187


Tumor development alters liver biology

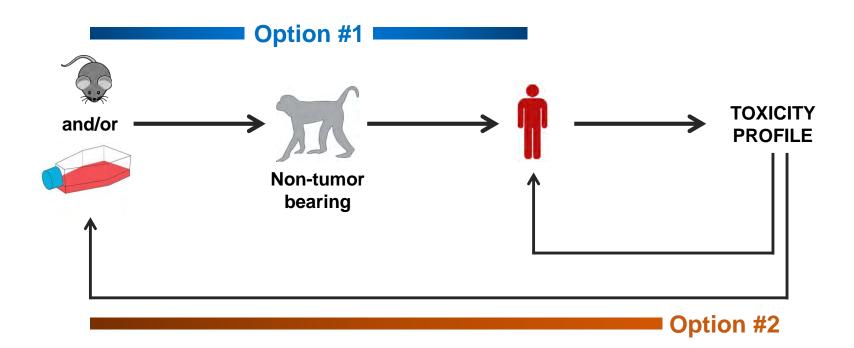
Interleukin-6 and cytochrome-P450, reason for concern? Rheum Int. 32:2601 (2012) 2012 IL-6 reduces the activity of cytochrome P450 (CYP) enzymes (CYP3A4, CYP2C9, CYP2C19) > increased bioavailability of drugs Tocilizumab (anti-IL6Ra) blocks IL-6 signaling → decreased bioavailability of simvastatin (CYP3A4 substrate) and omeprazole (CYP2C19 substrate) 2015 Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. *Nat Cell Biol* 17:816 (2015)Pancreatic cancer-derived exosomes induce activate Kupffer cells to secrete transforming growth factor \(\beta \) secretion inducing fibronectin deposition by hepatic stellate cells. Tumor-induced IL-6 reprograms host metabolism to suppress anti-tumor immunity. Cell Metabolism 2016 24:672 (2016) Tumor-induced IL-6 impairs the ketogenic potential of the liver leading to increased glucocorticoid production in setting of caloric insufficiency. IL-6/STAT3 activation in hepatocytes drives the formation of a pro-metastatic niche in the liver 2017

during pancreatic tumorigenesis. AACR Annual Meeting Abstract# 2682 (2017)

 Pancreatic cancer development induces IL-6/STAT3 activation in hepatocytes which drives myeloid cell recruitment to the liver and deposition of extracellular matrix proteins

Tumor development alters liver biology

Challenges with modeling irAEs in mice


- Lack of comorbidities (non-alcoholic fatty liver disease may affect up to 30-40% of adults, obesity, heart disease, diabetes)
- Genetics
- Diet/Microbiome
- Medications
- Exposure to community-acquired infections

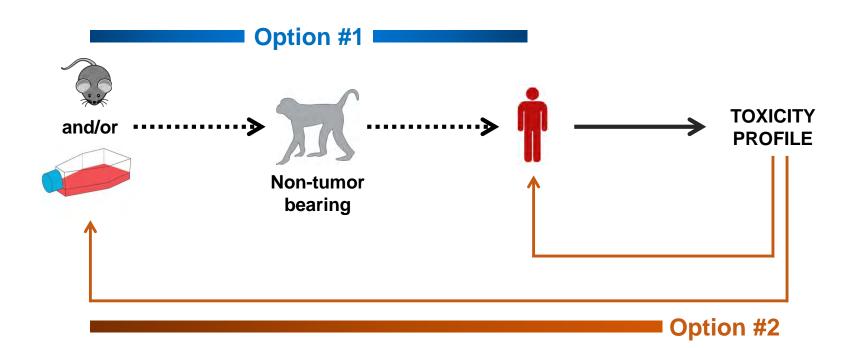
Incorporating mouse models into the study of IO toxicities Predictive vs Informative

How should we incorporate preclinical models for the study of IO toxicities?

Option 1: Evaluate for potential toxicities in preclinical setting to inform translation and monitoring in patients.

Option 2: Identify toxicities that emerge after translation into patients and study them.

Option #1: Toxicity findings justify investigation, but because findings are not absolute predictors, detailed investigations may not be warranted at this stage of development


Option #2: Careful use of preclinical models may inform human pathology

Incorporating mouse models into the study of IO toxicities Predictive vs Informative

How should we incorporate preclinical models for the study of IO toxicities?

Option 1: Evaluate for potential toxicities in preclinical setting to inform translation and monitoring in patients.

Option 2: Identify toxicities that emerge after translation into patients and study them.

Option #1: Toxicity findings justify investigation, but because findings are not absolute predictors, detailed investigations may not be warranted at this stage of development

Option #2: Careful use of preclinical models may inform human pathology

- Preclinical immunocompetent mouse models can be used to inform mechanisms of irAE seen in humans treated with immunotherapy.
- There is no perfect model for studying irAEs. Models need to be matched to the question to be addressed.
- Subclinical pathology from genetic predisposition or environmental insults may predispose to irAEs.
- Measuring irAEs in preclinical models can be done via monitoring hepatic enzymes, weight loss, organ pathology, serum cytokines even in the absence of overt symptoms.
- Immunotherapy may alter the tolerability to chemotherapy.
- Tumor development and immunotherapy impact liver biology implications for altered pharmacokinetic profiles for concomitant medications.
- <u>Most current models do not incorporate subclinical pathology</u> settings (for ex. Studying tumor biology in NOD mice predisposed to development of diabetes) a possible advantage for spontaneous models.
- Mechanisms regulating irAE may differ between tumor-free and tumor-bearing mice?
- Age can impact the immune system and perhaps irAE development.
- Ameliorating toxicity does not necessarily mean loss of efficacy.
- Toxicity findings in preclinical models are not absolute predictors of pathology in humans but toxicity does justify investigation.

Acknowledgements

Beatty Laboratory

University of Pennsylvania

Beatty Laboratory

Jae Lee

Jason Liu

Meredith Stone

Kathleen Graham

Max Wattenberg

Devora Delman

Yan Li

Joey Li

Xiaoqing Pan

Thomas Buckingham

Evan Tooker

Ishir Seth

Fatima Chaundhry

Colton Tom

UPenn Abramson Cancer Center

Peter O'Dwyer

Janos Tanyi

Robert Vonderheide Ursina Teitelbaum

Kim Reiss-Binder Michael Soulen

Anne Chew

Lester Lledo

McGarvey

Anne Marie Nelson

Erica Carpenter

Drew Torigian

Andrew Haas

Mark O'Hara

Ben Stanger **Andrea Troxel**

Gabriela Plesa

Maureen

Paige Porrett Steve Albelda

Center for Cellular <u>Immunotherapies</u>

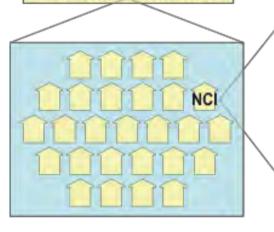
Carl June

TCSL

Simon Lacey Jos Melenhorst Joseph Fraietta

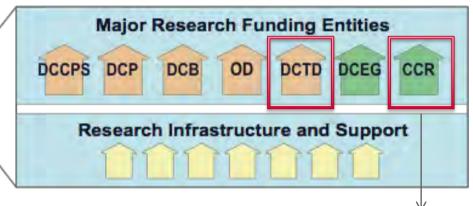
A comparative approach to immuneoncology drug development: Integration of canine models

Amy LeBlanc, DVM DACVIM (Oncology)
Director, Comparative Oncology Program
NIH/NCI/CCR



The NCI's Center for Cancer Research (CCR) is part of the Intramural

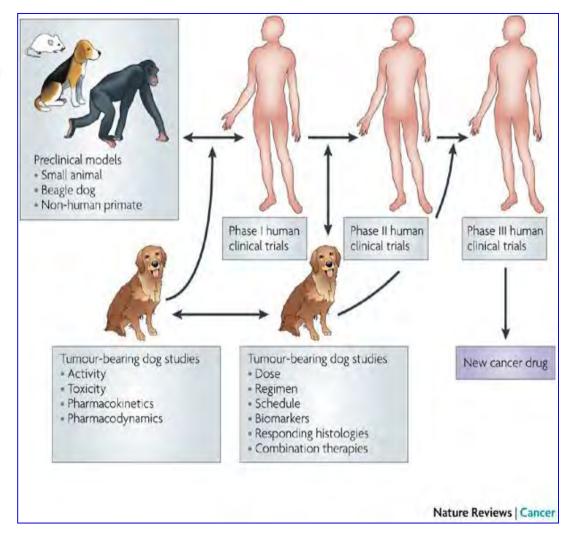
Research Program (IRP) of NIH



NIH

27 Institutes/Centers

Extramural research
 Intramural research


NIH NATIONAL CANCER INSTITUTE

Comparative Oncology Program

Molecular Imaging Program

A Comparative and Integrated Approach to Cancer Drug Development

- ✓ Naturally-occurring, spontaneous cancers solid tumors, hematologic cancers
- ✓ Immune-competent host
- ✓ Compressed disease progression, short survival
- ✓ Tumor/stroma heterogeneity
- Application of chemotherapy, surgery, radiotherapy; single-agent and combinations
- ✓ Resistance to therapy
- ✓ Metastasis
- ✓ No 'standard of care'

The NCI Comparative Oncology Trials Consortium (COTC)

Auburn University Auburn, AL

Colorado State University

Cornell University Ithaca, NY

Kansas State University Manhattan, KS

Iowa State University Ames, Iowa North Carolina State University Raleigh, NC

Oregon State University Corvallis, OR

Purdue University West Lafayette, IN

Texas A&M University College Station, TX The Ohio State University Columbus, OH

Tufts University North Grafton, MA

University of California Davis, CA

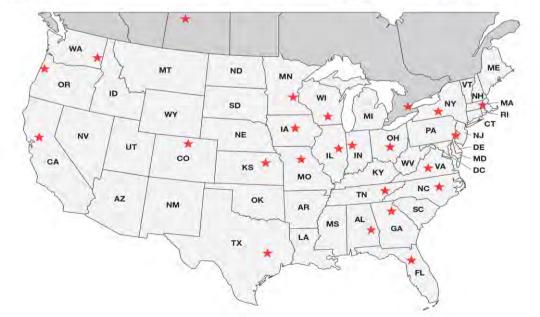
University of Florida Gainesville, FL

University of Georgia Athens, GA University of Guelph Guelph, ON Canada

University of Illinois Urbana, IL

University of Minnesota St. Paul. MN

University of Missouri Columbia, MO


University of Pennsylvania Philadelphia, PA Univeristy of Saskatchewan Saskatoon, Saskatchewan

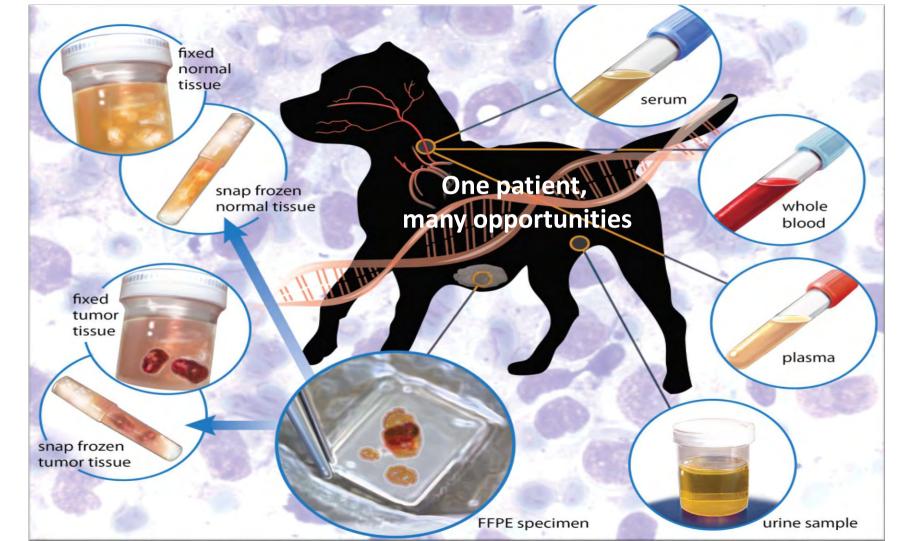
University of Tennessee Knoxville, TN

University of Wisconsin Madison, WI

Virginia Tech Blacksburg, VA

 Washington State University Pullman, WA

Advocacy for the Appropriate Integration of Comparative Oncology Trials

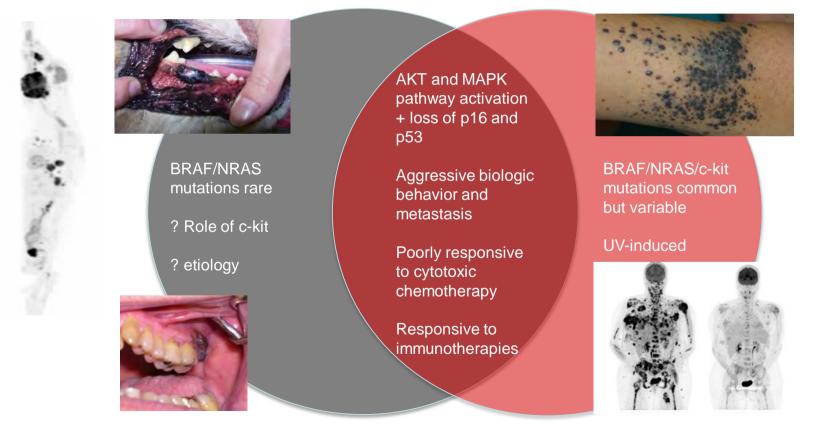

Academia
Pharma
NCI
Regulatory Bodies

Reagent/Resources
to conduct studies in
Comparative Oncology
Genomics
Proteomics
Antibodies

PD Core - CSU Contract Core TMAs/Cell Lines

Canine Comparative
Oncology and Genomics
Consortium

COTC Trial	Summary of Initiated trial	No. COTC Sites	Publication Status
COTC001	Tumor specific delivery of RGD-TNF-a phage	6	PLoS One 3/2009
COTC003	PK/PD (tumor) of rapamycin in OS	4	PLoS One 6/2010
COTC005	Tolerability and biological of tumor targeted IL-2/IL-12	4	Pending
СОТС006	Optimizing PD endpoints sampling by cryobiopsy technique	2	Pending
COTC007a	Trial design validation: parent Topoisomerase I inhibitor	6	Pending
COTC007b	Evaluation of three novel Indenoisoquinolines	6	Clinical Cancer Research 8/2018
COTC008	Tolerability and feasibility of long term parenteral rapamycin in OS	14	PLoS One 6/2010
COTC010	Safety and biological activity of two immunocytokines in melanoma	6	PLoS One 6/2015
COTC013	Bioavailability of orally administered rapamycin	2	Complete/under analysis
COTC016	Feasibility of Tissue Collections and Molecular Profiling for Personalized Medicine Studies	11	PLoS One 4/2014
COTC018	Clinical evaluation of iniparib	9	PLoS One 2/2016
СОТС020	PK of oral rapamycin in OS (walk-in)	5	Complete/under analysis
COTC021/022	Adjuvant rapamycin in OS when added to SOC	18	Complete/under analysis
COTC024	Oncolytic virotherapy in canine cancer	4	Open trial
СОТС026	Listeria-based immunotherapy in OS	11	Open trial



Specific COTC trial examples: Advancing development of immuneoncology agents

- 1. Canine melanoma and IL12-based immunocytokine therapy
- 2. Canine T-cell lymphoma and oncolytic virotherapy optimization
- Canine bladder cancer and EGFR-targeted photoimmunotherapy

Canine melanoma and IL12based immunocytokine therapy

Canine and human melanoma may exhibit key differences in activating mutations, but demonstrate similar malignant potential, downstream pathway activation and biologic behavior *in vivo*

Citation: Paoloni M, Mazcko C, Selting K, Lana S, Barber L, Phillips J, et al. (2015) Defining the Pharmacodynamic Profile and Therapeutic Index of NHS-IL12 Immunocytokine in Dogs with Malignant Melanoma. PLoS ONE 10(6): e0129954. doi:10.1371/ journal.pone.1029954

Academic Editor: Nupur Gangopadhyay, University of Pittsburgh, UNITED STATES

Received: December 2, 2014

Accepted: May 14, 2015

Published: June 19, 2015

Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CCO public domain dedication.

Funding: This research was supported in part by the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute, Center for Cancer Research, and by Merck KGaA, Darmstadt, Germany, NHS-IL-I2 was provided by EMD Serono, Billerica, MA. Editorial assistance was provided by Martianne Jenatie-Pytocker, PhD CMPP, TRM Oncology, The Hague. The Netherlands, funded by Merck KGaA, Darmstadt, Germany, AB, BB, and RT are employees of EMD Serono, Billerica, MA, USA (a subsidiary of Merck KGaA, Darmstadt, Germany). The funders had no role in study design, RESEARCH ARTICLE

Defining the Pharmacodynamic Profile and Therapeutic Index of NHS-IL12 Immunocytokine in Dogs with Malignant Melanoma

Melissa Paoloni¹, Christina Mazcko¹, Kimberly Selting², Susan Lana³, Lisa Barber⁴, Jeffrey Phillips⁵, Katherine Skorupski⁶, David Vail⁷, Heather Wilson⁸, Barbara Biller³ Anne Avery³, Matti Kiupel⁹, Amy LeBlanc¹, Anna Bernhardt¹⁰, Beatrice Brunkhorst¹⁰ Robert Tighe¹⁰. Chand Khanna¹*

1 Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America, 2 College of Veterinary Medicine, University of Misscouri-Columbia, Columbia, Misscouri, United States of America, 3 College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, Colorado, United States of America, 4 School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America, 5 College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America, 5 College of Veterinary Medicine, University of California Davis, Davis, California, United States of America, 7 School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, 8 College of Veterinary Medicine, Texas A&M University, College of Station, Texas, United States of America, 9 College of Veterinary Medicine, Michigan State University, College of Veterinary Medicine, Michigan Development Institute, Billetica, Massachusetts, United States of America, 10 EMD-Serono

khannac@mail.nih.gov

Abstract

Background

Interleukin (IL)-12 is a pro-inflammatory cytokine that mediates T-helper type 1 responses and cytotoxic T-cell activation, contributing to its utility as anti-cancer agent. Systemic administration of IL-12 often results in unacceptable toxicity; therefore, strategies to direct delivery of IL-12 to tumors are under investigation. The objective of this study was to assist the preclinical development of NHS-IL12, an immunocytokine consisting of an antibody, which targets necrotic tumor regions, linked to IL-12. Specifically this study sought to evaluate the safety, serum pharmacokinetics, anti-tumor activity, and immune modulation of NHS-IL12 in dogs with naturally occurring cancers.

Methodology/Principal Findings

A rapid dose-escalation study of NHS-IL12 administered subcutaneously to dogs with melanoma was conducted through the Comparative Oncology Trials Consortium (COTC). Eleven dogs were enrolled in four dose-escalation cohorts; thereafter, an additional seven dogs were treated at the defined tolerable dose of 0.8 mg/m². The expanded cohort at this fixed dose (ten dogs in total) was accrued for further pharmacokinetics and pharmacodynamics assessment. NHS-IL12 levels, serum cytokine concentrations, and peripheral blood

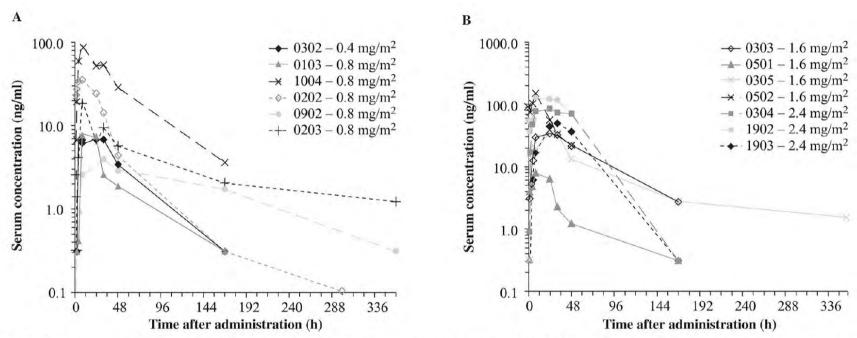


Table 1. Study schedule for dose escalation and cohort expansion of NHS-IL12 administered subcutaneously.

Action	Pre- Tx	Day 1	Day 2	Day 3	Day 8	Day 15	Day 22	Day 29	q. Day 8	q. 28 days
Patient eligibility	X			- 0.		7				
Tumor measurements	Х				X	X	X	X	X	X
Tumor biopsy	X				X			X		X
Draining lymph node fine-needle aspirates	X				X			X		X
Serum (IFN-γ, cytokines, drug levels, immunogenicity)		Х	X	X	X	X		X	X	Х
PBMC immune cell characterization		X	X	X	X			X		X
CBC/chemistry and coagulation profiles/UA		X			X	X		X	X	X
Abdominal ultrasound/thoracic radiographs	X							X		X
NHS-IL12 subcutaneous		X						X		X
Weight measurement	X		X		X	X	X	X	X	X
Fever monitoring		X	X				X	X		
Digital photo	X				X			X	X	X

CBC: complete blood count; IFN, interferon; PBMC, peripheral blood mononuclear cell; Tx: treatment; UA: urinalysis.

Dogs receiving NHS-IL12 subcutaneously achieve measureable drug exposures across multiple dosing cohorts

Fig 1. Subcutaneous administration of NHS-IL12 resulted in measurable serum drug levels. Serum samples were collected from dogs to define systemic exposures of NHS-IL12 after subcutaneous administration. NHS-IL12 levels were measured pre-treatment and at 1, 2, 4, 8, 24, 36, and 48 hours following administration (8-point collection) and on days 8, 15, and 29. NHS-IL12 C_{max} was dose-dependent: 0.4 mg/m² and 0.8 mg/m² (A) and 1.6 mg/m² and 2.4 mg/m² (B). Clearance was prolonged in some dogs as NHS-IL12 was still measurable in five animals 14 days following treatment.

Dogs receiving NHS-IL12 subcutaneously demonstrate pharmacodynamic response via posttreatment IFN-g and IL-10 release

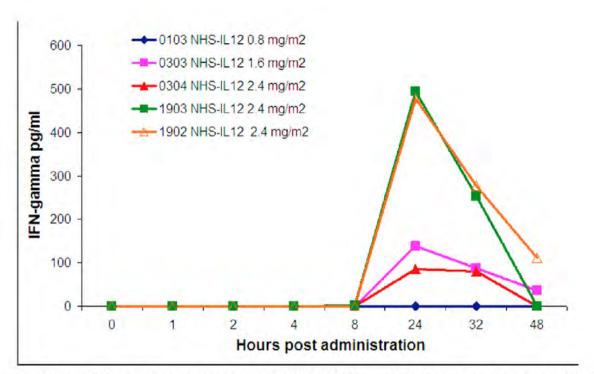


Fig 3. Serum IFN- γ induction was associated with NHS-IL12 dose and the observation of adverse events. IFN- γ levels were measured using ELISA techniques. Induction of IFN- γ was detectable in dogs treated with NHS-IL12 at a dose of 1.6 mg/m² or higher. IFN- γ levels spiked sharply at 24 hours post-treatment and returned to undetectable levels by 48 hours. Elevated serum IFN- γ (> 100 pg/ml) was associated with increased risk for toxicity. However the highest level of IFN- γ induction was not directly linked to the most severe (Grade 4 or 5) adverse events.

Dogs receiving NHS-IL12 subcutaneously demonstrate pharmacodynamic response via posttreatment IFN-g and IL-10 release

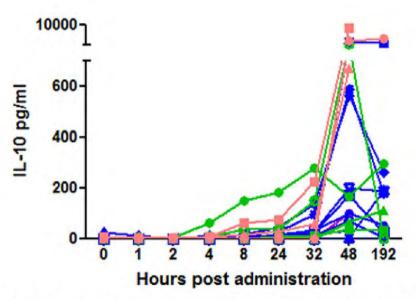


Fig 2. Serum IL-10 levels increased following treatment with NHS-IL12. Each line represents a different dog, with individual colors representing different treatment groups. Serum IL-10 levels at 48 and 192 hours were significantly different from time points 0–8 hours (Kruskal-Wallis test followed by Dunn's multiple comparison test) when data from all dogs was pooled. There was no difference in IL-10 levels at 48 hours between any of the treatment groups (Kruskal-Wallis test, p = .06, the 0.4 mg/m2 group was not included because it was a single dog).

COTC010: Deliverables

- NHS-IL12, a fully-human necrosis-targeted IgG1 antibody/IL-12 conjugate, can be safely and repeatedly administered to tumor-bearing dogs
 - PD biomarkers: Induction of IFNg and IL-10, CD8+ TILs all linked to exposure at the MTD
- An efficacy signal was identified in 2/7 canine oral malignant melanoma patients
- Adverse events relatable to cytokine release
 - Self-limiting lymphopenia, fever, hepatic enzymopathy
 - > 1.6 mg/m² associated with Grade 4 or 5 events (vascular leakage syndrome, thrombocytopenia, DIC)
- Cohort expansion at MTD (25.8 ug/kg or 0.8 mg/m² at Dose Level 2) allowed confirmation of tolerability, PK/PD, efficacy signal

COTC010: Deliverables

Re-prioritization of this agent occurred after receipt of canine data in 2010

- IND opened in 2011 for human Phase I work at NIH-CC -- recently published in Clinical Cancer Research
 - N = 59 patients; MTD defined as 16.8 ug/kg (Dose level 8)
 - Adverse event profile similar to dogs: fever, leukopenia, hepatic enzymopathy
 - PD data similar to dogs: IFNg and IL-10 induction; added findings from PBMC subsets, TCR sequencing
- Canine data comparable to human data: same agent, similar AE profile, similar MTD
- Generated in 18 months for less than \$300,000

Author Manuscript Published OnlineFirst on August 21, 2018; DOI: 10.1158/1078-0432.CCR-18-1512 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

Date: August 7, 2018 For: Clin Cancer Res

First-In-Human Phase I Trial of a Tumor-Targeted Cytokine (NHS-IL12) in Subjects with Metastatic Solid Tumors

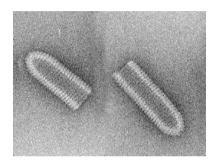
Julius Strauss^{1*}, Christopher R. Heery^{2*}, Joseph W. Kim³, Caroline Jochems¹, Renee N. Donahue¹, Agnes S. Montgomery⁴, Sheri McMahon⁵, Elizabeth Lamping⁵, Jennifer L. Marté⁶, Ravi A. Madan⁶, Marijo Bilusic⁶, Matthew R. Silver⁷, Elisa Bertotti⁷, Jeffrey Schlom¹, James L. Gulley⁶

¹Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland. ²Bavarian Nordic, Morrisville, North Carolina. ³Yale University, New Haven, Connecticut. ⁴Uniformed Services University of the Health Sciences, Bethesda, Maryland. ⁵Office of Research Nursing, National Cancer Institute, National Institutes of Health. ⁶Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland. ⁷EMD Serono, Darmstadt, Germany.

*Authors contributed equally

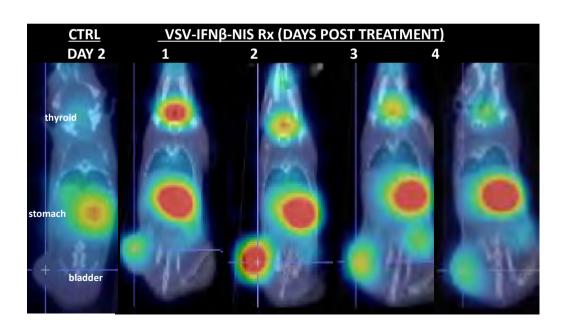
Corresponding Author: James L. Gulley, MD, PhD, 10 Center Drive, Room 13N240C, Bethesda, MD 20892, USA (e-mail: gulleyj@mail.nih.gov; tel: 301-480-7164)

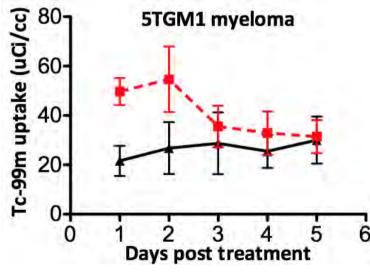
Canine T-cell lymphoma and oncolytic virotherapy optimization


Oncolytic virotherapy: VSV-IFNβ-NIS*

Replication-competent, lab-attenuated strain of VSV-Indiana

- IFNβ: species-specific constructs
 - Protective of normal tissues
 - Direct anti-tumor effect
 - Cross-priming of T cells 'vaccine' effect
- NIS (sodium-iodide symporter)
 - Allows imaging of expressed protein with nuclear medicine techniques (^{99m}Tc, ¹²³I, ¹⁸F-tetrafluoroborate)


Currently under study in human patients with solid tumors, myeloma, lymphoma, leukemia (IV and IT dosing)



Preclinical development : VSV-hIFNβ-NIS

INTERGENIC STOP-START

Naik S, et al. *Cancer Gene Therapy* 2012; 19(7): 443-450.

HUMAN GENE THERAPY CLINICAL DEVELOPMENT 24:174–181 (December 2013)
© Mary Ann Liebert, Inc.
DOI: 10.1089/humc.2013.165

Safety Studies on Intravenous Administration of Oncolytic Recombinant Vesicular Stomatitis Virus in Purpose-Bred Beagle Dogs

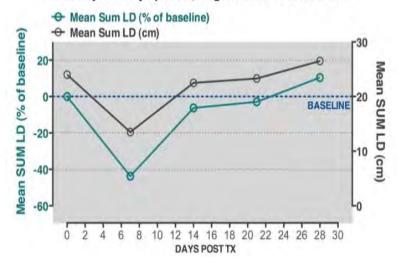
Amy K. LeBlanc,^{1,2,*} Shruthi Naik,^{3,*} Gina D. Galyon,¹ Nathan Jenks,⁴ Mike Steele,⁴ Kah-Whye Peng,^{3,4} Mark J. Federspiel,^{3,5} Robert Donnell,⁶ and Stephen J. Russell³

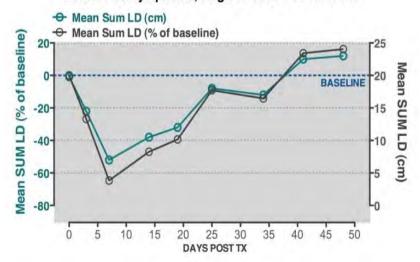
- ✓ Rapid single-dose escalation study in Beagle dogs
- ✓ Systemic administration of VSV-hIFNb-NIH at 10⁸ to 10¹¹ TCID₅₀ IV
- ✓ Characterization of toxicity, immune response, shedding
- ✓ Enabled a pet dog clinical trial

Models and Technologies

Comparative Oncology Evaluation of Intravenous Recombinant Oncolytic Vesicular Stomatitis Virus Therapy in Spontaneous Canine Cancer

Shruthi Naik^{1,2}, Gina D. Galyon³, Nathan J. Jenks⁴, Michael B. Steele⁴, Amber C. Miller¹, Sara D. Allstadt³, Lukkana Suksanpaisan⁵, Kah Whye Peng⁴, Mark J. Federspiel⁶, Stephen J. Russell^{1,2}, and Amy K. LeBlanc³




High-grade peripheral T cell LSA Aggressive clinical course MHC Class II – low expression CD4+/CD45+

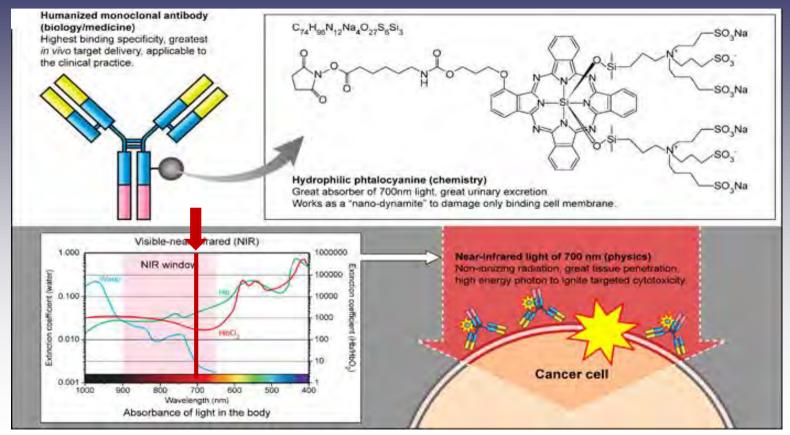
Peripheral Lymphoma disease burden (VCOG)
Beasley: T-cell lymphoma, single IV dose VSV-hIFN-NIS

Peripheral Lymphoma disease burden (VCOG)
Roxie: T-cell lymphoma, single IV dose VSV-hIFN-NIS

Schema for COTC-024: Dose-escalation study of systemically-administered VSV-hINFb-NIS in dogs with cancer

i. ENROLLMENT **Eligibility Criterion** Informed consent by owner ii. PRE-ASSESSMENT Physical evaluation (PE) Baseline biologic samples (urine, buccal swab, feces, blood) Baseline tumor burden iii. TREATMENT ABSL-2 admittance + treatment

Dose: 1x10¹⁰ TCID₅₀/0.5m² 10ml injected in 2-5 min bolus


v. ACUTE MONITORING							
Temperature and PE							
Pharmacokinetic (PK) studies							
PK assessment (whole blood, PBMCs, pla	sma	a)					
Time (min) 10 30 60 90 120 240 360							
		_					
. LONG TERM MONITORING							
DAYS POST TREATMENT	1	3	7	14	21	28	
	1	3	7	14	21	28	
DAYS POST TREATMENT	1 •	3 •	7 •	14	21	28	
DAYS POST TREATMENT Clinical pathology [CBC, Chem, Coag]	1 •	3 •	7 •	14	21	28	
DAYS POST TREATMENT Clinical pathology [CBC, Chem, Coag] Viremia & a VSV Antibody	1 •	3 •	7 •	14	21	28	

COTC024: Deliverables

- VSV-IFNb-NIS can be safely administered systemically and intratumorally to dogs with cancer
 - Exploration of human and canine-specific IFNb constructs
 - NIS facilitates ^{99m}Tc-based molecular imaging of viral trafficking in vivo
- Adverse events are relatable to hepatic DLT (reversible enzymopathy) and cytokine release – fully evaluable and attributable in pet dogs
- Efficacy signal in T cell lymphoma warrants further study
 - Comparative canine study linked to open IND for same agent
 - Can explore PK-PD relationships in multiple tumor types and various dosing strategies simultaneously in dogs

Canine invasive urothelial carcinoma (iUCa) and EGFR-targeted photoimmunotherapy

Near infrared photo-immunotherapy (NIR-PIT)

Mitsunaga, Kobayashi, Nature Med, 2011/12

Phase 1: Multicenter results

No severe adverse side effect

9 patients (7 males, 2 females), aged 52-86 years, enrolled in to RM-1929/101 Part I study.

	Patient	Tumor site	Previous Treatment	Tumor size, CT (cm)	HPV/p16 Status	RECIST	Survival
mg/m^2	03-101	Oropharynx	Surgery, radiation×2, cisplatinum	2.6 × 1.2	+/+	PR	1.5
	03-102	Posterior oro- and hypopharynx	Surgery, radiation	3.0 × 7.0 clinical	-/-	CR	>20m
160	03-103	Right anterior tongue	Surgery, radiation ×2, carboplatin, 5-FU, cetuximab	2.8 × 0.7 × 1.3	-/-	PR	6
2 320 mg/m ²	03-201	Right neck	Surgery, radiation, taxol, carboplatin, cetuximab, nivolumab	8.0 × 6.0 × 4.0	-/-	SD	2
	03-201	Right submandi- bular, submental	Surgery, radiation, cis- platinum, paclitaxel	6.0 × 4.5 submandibular, 2.3 × 1.7 submental	-/-	CR	>15m
	02-212	Left tongue base	Surgery, radiation, cisplatinum,docetaxel, cetuximab	2.0 × 1.1 × 0.9	-1-	PR	5.5
	02-311	Occipital mass	Surgery, radiation, PD-1 inhibitor, cetuximab, PI3K inhibitor	2.7 × 3.3	+/NA	PR	2.5
mg/m^2	05-341	Pharynx and buccal mass	Surgery, radiation, 5-FU, cisplatinum, docitaxel	6.0 × 4.0 left cheek 4.0 × 4.0 left oropharynx 5.0 × 3.0 left nasopharynx	NA/NA		1
640	03-301	Dermal meta- stases, neck nodes	Surgery, radiation, cisplatinum, cetux- imab, nivolumab	4.0 × 1.0, 2.0 × 1.0 right neck metastases; 2.0 × 1.0 right neck midline metastasis	-/+	CR	>16m

Abbreviations: CT = computed tomography; HPV = human papilloma virus; NA = not applicable; PD-1 = programmed cell death protein 1; PI3K = phosphoinositide 3 kinase; p16 = p16 protein; 5-FU = 5-flouorouracil

Review

Naturally-Occurring Canine Invasive Urothelial Carcinoma: A Model for Emerging Therapies

Breann C. Sommer^a, Deepika Dhawan^a, Timothy L. Ratliff^{b,c} and Deborah W. Knapp^{a,c,*}

Similarities in muscle-invasive bladder cancer between dogs and humans

Physiological age of onset

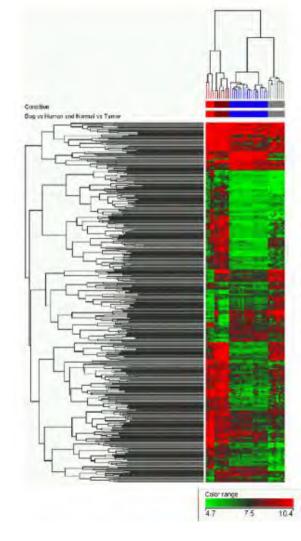
Clinical signs/symptoms

Cellular and pathological features including high grade, tumor heterogeneity, and local invasion

Molecular subtypes (e.g. luminal, basal)

Biological behavior (sites and frequency of metastasis)

Response to chemotherapy (e.g. cisplatin, carboplatin, vinblastine)


Shared molecular targets (e.g. EGFR, CDKN2B, PIK3CA, BRCA2, NFkB, ARHGEF4, XPA, RB1CC1, RPS6, MITF, and WT1)

^aDepartment of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA

^bDepartment of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA

CPurdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA

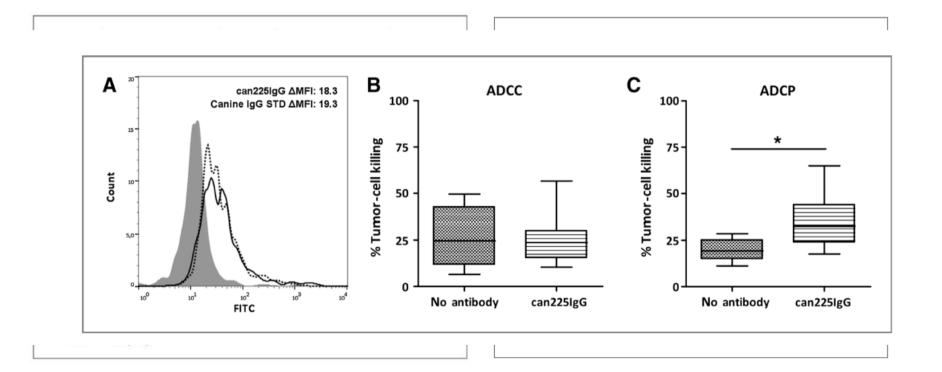
Similarities between naturally-occurring canine invasive urothelial carcinoma and human invasive urothelial carcinoma

Similar gene expression patterns between dog and human in invasive bladder cancer and dog genes cluster into luminal and basal subgroups—as in human disease

Fig 2. Canine and human IUC samples cluster together. A list of genes that are commonly annotated and significantly expressed (between normal and iUC, p<0.05, FC2) in dogs and humans, was generated. Hierarchical clustering was performed on these genes (n = 436) using Euclidean distance metrix. Figure illustrates that canine and human normal controls cluster together and these cluster separately from canine and human iUC samples. The iUC samples from dogs and humans clustered together. The color codes are: (1) red bar denoting canine normal bladder, (2) brown bar denoting normal human bladder, (3) blue bar denoting canine iUC samples, and (4) grey bar denoting human iUC samples.

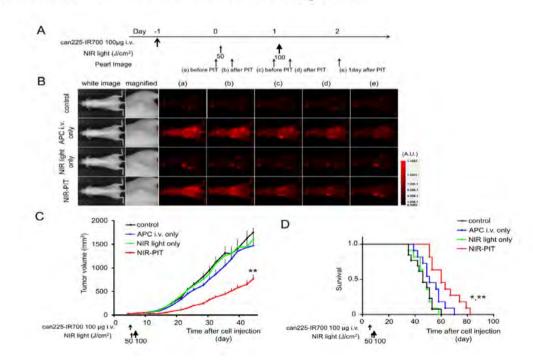
doi:10.1371/journal.pone.0136688.g002

Dogs with naturally-occurring iUCa are ideal participants in clinical trials designed to advance new therapeutic concepts



- ✓ Known breed disposition (Scottie, Sheltie, Beagle, other small Terriers)
- ✓ Muscle-invasive at diagnosis
- √ Herbicide exposure increases risk
- ✓ BRAF V595E mutation present in ~ 85% of cases
- ✓ Current medical and surgical therapies largely unrewarding and toxic
 - -- Median PFI ~ 100-200 days
 - -- Local progression + metastasis to distant sites (lymph node, lung, liver, bone)

A canine anti-EGFR antibody (can225) can reduce viability and proliferation of EGFR-overexpressing cell lines as well as induce antibody-dependent phagocytosis



Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody

Tadanobu Nagaya¹, Shuhei Okuyama¹, Fusa Ogata¹, Yasuhiro Maruoka¹, Deborah W. Knapp², Sophia N. Karagiannis^{3,4}, Judit Fazekas-Singer^{5,6}, Peter L. Choyke¹, Amy K. LeBlanc⁷, Erika Jensen-Jarolim^{5,6} and Hisataka Kobayashi¹

Next steps:

- Translate canine EGFR-PIT to the canine bladder cancer patient in support of human translation past EGFR+ head/neck cancers
- Ultimate goal: combine with checkpoint blockade to enhance anti-tumor effect

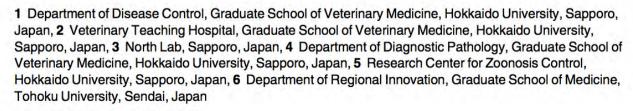
COTC029: Deliverables

- Main goal: assess safety of single-dose EGFR-PIT in dogs with iUCa
 - Proof of concept n = 8 to establish single dose safety, tolerability, efficacy
 - Serial cystoscopy, biopsy/histopathology of tumor and normal bladder tissue

- Consider expanded cohort to explore multiple dosing options at MTD
 - Fully canine Ab-dye conjugate allows repeated dosing

Recent efforts in canine immuno-oncology: Checkpoint molecules and correlative assays

What do we know about canine immune checkpoints and checkpoint inhibitors?


- Canine PD-1 and PD-L1 genes are conserved 100% among dog breeds.
- Recombinant canine PD-1 and PD-L1 proteins have been constructed and shown to bind to one another; anti-PD1 antibody blocks the binding of soluble PD-1 with canine PD-L1 expressing cells in a dose-dependent manner.
- Fresh canine tumor biopsy explant cultures mixed with activated canine PBMCs + anti-PD1 showed an increase in IFN-gamma production in the presence of anti-PD1.
- Most canine tumors express PD-L1 and increased expression is associated with the density of T cell infiltration. Immune stimuli (e.g., IFN-gamma) can further upregulate PD-L1 expression.
- Anti-PD-L1 treatment enhances IFN-gamma production from cultured tumor-infiltrating lymphocytes (TILs) from clinical specimens.
- CD8+ TIL cells from canine lymphomas have a higher PD-1 expression than CD8+ cells from normal canine lymph nodes.
- A clinical trial studying the effect of anti-PD1 in dogs with cancer has begun (sponsored by Merck Animal Health).

RESEARCH ARTICLE

Immunohistochemical Analysis of PD-L1 Expression in Canine Malignant Cancers and PD-1 Expression on Lymphocytes in Canine Oral Melanoma

Naoya Maekawa¹, Satoru Konnai¹, Tomohiro Okagawa¹, Asami Nishimori¹, Ryoyo Ikebuchi¹, Yusuke Izumi², Satoshi Takagi², Yumiko Kagawa^{3,4}, Chie Nakajima⁵, Yasuhiko Suzuki⁵, Yukinari Kato⁶, Shiro Murata¹, Kazuhiko Ohashi¹*

Pathology	Positive cases/Tested samples 36/40				
Melanoma (oral)					
Osteosarcoma	7/10				
Hemangiosarcoma	6/10				
Mast cell tumor (grade III)*	3/5				
Mammary adenocarcinoma**	4/5				
Prostate adenocarcinoma	3/5				
Squamous cell carcinoma (skin)	0/5				
Diffuse large B-cell lymphoma	0/5				
Nasal adenocarcinoma	0/5				
Soft tissue sarcoma	0/5				
Histiocytic sarcoma	0/5				
Transitional cell carcinoma	0/5				
Anal sac gland carcinoma	0/5				
The results of immunohistochemical analysis were sum *Grading of mast cell tumor was performed in accordant **No inflammatory mammary carcinoma was included	nce with the Patnaik grading method [19].				

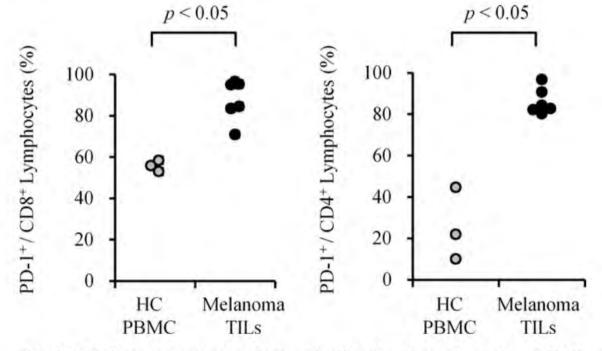
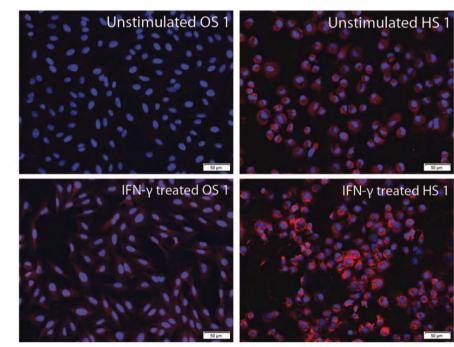


Fig 4. PD-1 expression on tumor-infiltrating lymphocytes (TILs) obtained from oral melanoma. TILs were collected from surgically excised oral melanoma tissues and the expression level of PD-1 was evaluated by flow cytometry. Left panel, PD-1 expression on CD8⁺ lymphocytes. Right panel, PD-1 expression on CD4⁺ lymphocytes. Peripheral blood mononuclear cells (PBMC) obtained from healthy dogs were used as control (healthy control, HC). p < 0.05 was considered statistically significant (Mann–Whitney U test).

Original Article

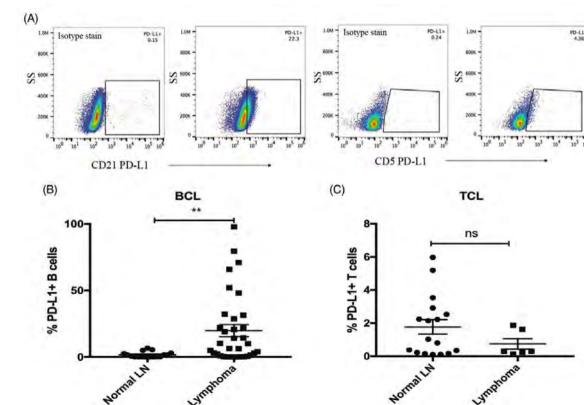

DOI: 10.1111/vco.12197

Immune regulation of canine tumour and macrophage PD-L1 expression

G. Hartley, E. Faulhaber, A. Caldwell, J. Coy, J. Kurihara, A. Guth, D. Regan and S. Dow

Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Ft. Co

- Constitutive PDL-1 expression on all n = 14 canine cancer cell lines
- Significant upregulation after IFNg and TLR3 stimulation
- PDL-1 expression can be induced by IFNg exposure in canine monocytes/macrophage cultures

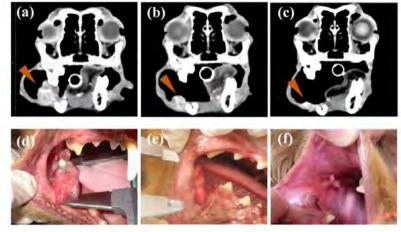

WILEY

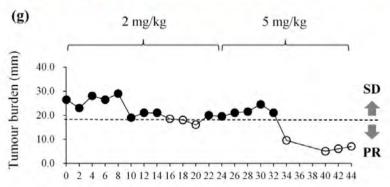
ORIGINAL ARTICLE

Checkpoint molecule expression by B and T cell lymphomas in dogs

G. Hartley¹ | R. Elmslie² | S. Dow¹ | A. Guth¹

- > B cell malignancies have higher PDL-1 expression than normal B cells
- > Both normal and malignant T cells have low to negative PD-1 and PDL-1 expression
- > TILs from both BCL and TCL patients have increased expression of PD-1 and PDL-1 compared to normal B and T cells from healthy animals


SCIENTIFIC REPORTS


Received: 27 February 2017 Accepted: 27 July 2017 Published online: 21 August 2017

OPEN A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral malignant melanoma or undifferentiated sarcoma

> Naoya Maekawa¹, Satoru Konnai¹, Satoshi Takaqi², Yumiko Kaqawa^{3,4}, Tomohiro Okaqawa Asami Nishimori¹, Ryoyo Ikebuchi¹, Yusuke Izumi², Tatsuya Deguchi², Chie Nakajima^{5,6}, Yukinari Kato^{7,8}, Keiichi Yamamoto⁹, Hidetoshi Uemura⁹, Yasuhiko Suzuki^{5,6}, Shiro Murata Kazuhiko Ohashi¹

- Clinical trial evaluated single and multidose treatment of canine solid tumors
- ➤ An efficacy signal noted in 2 dogs (sarcoma and melanoma)

Time (weeks)

Other NCI-sponsored activities: Comparative Immuno-Oncology in the Precision Medicine and Cancer Moonshot Era

NCI Supplements to Cancer Center Grants (P30s)

- As part of the Precision Medicine Initiative in Oncology, in 2016 the NCI competed and issued eight 1-year supplements to Support Research in Canine Immunotherapy via Collaboration of NCI-Designated Cancer Centers and Veterinary Medical Colleges.
- The goals of the supplement:
 - Sequence (by whole exome sequencing and RNAseq) at least 25 canine tumors (and their normal controls) in one of more of the following tumors: B-cell lymphoma, glioma, osteosarcoma, melanoma, bladder cancer, and mammary cancer
 - Determine the <u>mutational load</u> in the cancers chosen for study
 - Using appropriate computational tools, characterize <u>neoantigens</u> that can strongly bind canine MHC antigens
 - Describe and characterize the T lymphocyte numbers and subsets, as well as other relevant aspects of the tumor microenvironment, within the canine tumors

Institution(s)	Project Leader	Canine Cancer(s)	Title or Aims
Baylor College of Medicine/U. Florida Vet Med College/ Texas A&M/Tech U. Denmark	Jonathan Levitt, PhD/ Alan Herron, DVM	Bladder, Mammary, Melanoma	Mutational load and predicted neoantigens in canine tumors and characterization of immune infiltrate and the tumor microenvironment
U. Colorado/Colorado State U. Vet School	Jill Slansky, PhD/ Steven Dow, DVM, PhD	B-Cell Lymphoma	Immune profiling and neoantigen discovery in canine B cell lymphoma
DFCI-HCC/Tufts University Vet Med School	Katherine Janeway, MD/Cheryl London, DVM	Osteosarcoma	A multi-institutional approach to interrogate and improve immunotherapy outcomes in osteosarcoma
Purdue University/Duke University	Deborah Knapp, DVM/ H. Kim Lyerly, MD	Bladder	Advancing immunology in dogs with naturally-occurring invasive bladder cancer: a relevant model to improve immunotherapy across molecular cancer subtypes in humans
Roswell Park Cancer Inst. /Cornell U. Vet Med	Richard Koya, MD, PhD/Kristy Richards, PhD, MD	B-Cell Lymphoma	Immunogenic mutational load analysis for adoptive T cell therapy in canine B cell lymphoma
UC Davis/UC Davis School of Vet Med	Arta Monjazeb, MD, PhD	Glioma, Melanoma, Osteosarcoma	Evaluation of the tumor mutational landscape/neoantigens and immunophenotyping the tumor microenvironment in canine cancers
Ohio State U/OSU Vet Med School/TGEN	Peter Shields, MD/Jeffrey Trent, PhD	Melanoma, Osteosarcoma	Immunogenomic profiling of canine melanoma and osteosarcoma
MD Anderson CC/Texas A&M	Amy Heimberger, MD/ Jonathan Levine, DVM	Glioma	Genomic and immunological canine glioma characterization

Enter: Beau Biden Cancer Moonshot Initiative

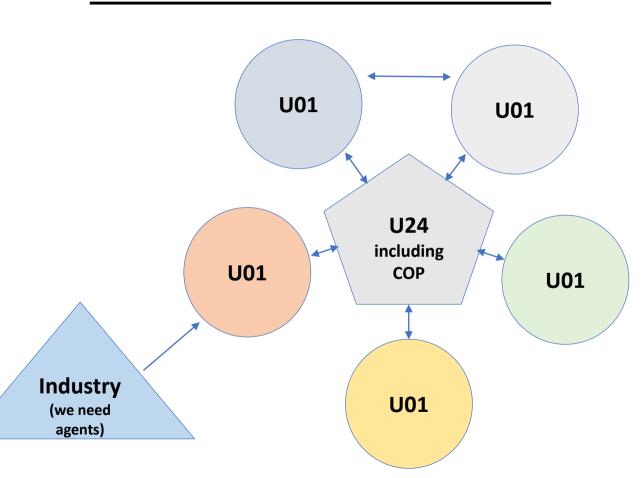
- In 2016 the NCI issued two RFAs (set-aside funding) for awards in 2017:
 - Canine Immunotherapy Trials and Correlative Studies (U01) to support:
 - Canine clinical trials using immunotherapeutic agents and novel combinations (of immune modulators, molecularly targeted agents, chemotherapy, and/or radiation
 - Correlative studies that seek to describe, characterize, and understand the cellular and molecular mechanisms that determine the anti-tumor response (or non-response) in dogs with spontaneous tumors.
 - Up to 5 awards to a network of academic laboratories, veterinary medicine clinical trial sites, and veterinary pharmaceutical companies (producing canine immunotherapy agents) working together
 - Coordinating Center (U24) assisted by the NCI's Comparative Oncology Program (COP) and an NCI Program Official that will:
 - Help develop/implement the clinical studies in immunotherapy and combinations
 - Establish a Steering Committee and an External Advisory Board
 - Assist in the standardization of clinical and laboratory protocols
 - Manage clinical and correlative data from all sites
 - Provide statistical support
 - Facilitate sharing of agents, specimens, and data via teleconferences and a website
 - Report progress in an annual report

5 U01s Selected for Funding

Grant Number	Pls	Lead Institution	Title
1U01CA224182-01	DOW, STEVEN W (contact); LONDON, CHERYL A	COLORADO STATE UNIVERSITY	Optimizing novel immunotherapy combinations targeting the tumor microenvironment in canine spontaneous osteosarcoma
1U01CA224151-01	CHAMBERS, M R (RENEE)	UNIVERSITY OF ALABAMA AT BIRMINGHAM	Canine immuno-neurotherapeutics (glioma)
1U01CA224160-01	PLUHAR, GRACE ELIZABETH (LIZ)	UNIVERSITY OF MINNESOTA	Novel combined immunotherapeutic strategies for glioma: using pet dogs as a large animal spontaneous model
1U01CA224166-01	CANTER, ROBERT (BOB) J (contact); REBHUN, ROBERT (ROB) B	UNIVERSITY OF CALIFORNIA AT DAVIS	Enhancing natural killer immunotherapy with first- in-dog trials of inhaled recombinant IL-15 and super-agonist IL-15 in naturally occurring canine cancers (melanoma and osteosarcoma)
1U01CA224153-01	LONDON, CHERYL A (contact); RICHARDS, KRISTY L	TUFTS UNIVERSITY BOSTON	Enhancing the efficacy of immunotherapy in DLBCL using rational combination approaches

U24 Selected for Funding

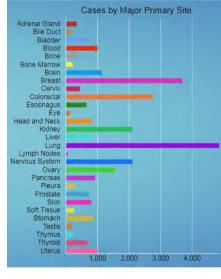
1U24CA224122-01	MASON, NICOLA (NICKY) J (contact); PROPERT, KATHLEEN (KATE)	UNIVERSITY OF PENNSYLVANIA	Coordinating Center for Canine Immunotherapy Trials and Correlative Studies
-----------------	---	-------------------------------	---

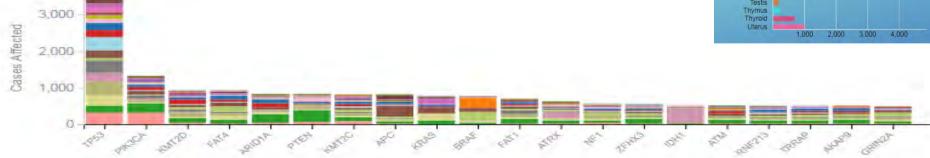

NCI Participants:

Amy LeBlanc	NCI Center for Cancer Research	Comparative Oncology Program: Heads the Comparative Oncology Trials Consortium (COTC)	Member of the Steering Committee
Connie Sommers	NCI Developmental Therapeutics Program	ImmunoOncology Branch	NCI Program Officer and member of the Steering Committee
Toby Hecht	NCI Division of Cancer Treatment and Diagnosis	Office of the Director	Deputy Division Director

How does this RFA work?

Each **U01** consists of a PI's lab(s) and one or more vet med colleges (members of the COTC—or not) for the proposed clinical studies


- Oncolytic virotherapy
- > NK cell therapy
- Small molecule repurposing
- Gene/cytokine therapy



Coming Soon: A Canine Genomics Data Commons (C-GDC)

 Patterned on the NCI Human Genomics Data Commons (GDC): https://portal.gdc.cancer.gov/

 Provides the cancer research community with a publicly accessible unified data repository that enables data sharing across cancer genomic studies in support of precision medicine. GDC data analysis tools allow users to interact intuitively with the GDC data and promote the development of a true cancer genomics knowledge base. >30,000 cases;
 >3M mutations in 22K genes

From the NCI-COP perspective:

What lies ahead for comparative oncology's role in immuneoncology research and development?

- Emphasis on continuing the scientific dialogue as it pertains to applicability and validity of the dog model of cancer for IO strategic advancement
- Maintain the highest standards for clinical trial design, execution and reporting
- Continue to develop of canine-specific reagents and correlative assays to support trial efforts and enhance human translation

Acknowledgements

NIH-NCI Center for Cancer Research

- -Office of the Director (Dr. Tom Misteli, Mel Bronez)
- -Molecular Imaging Program (Dr. Peter Choyke, Elaine Jagoda, Dagane Daar, Tieu Hoa, Alicia Forest, Phil Eclarinal, Karen Wong, Mirna Martinez)
- -Pediatric Oncology Branch (Drs. Kathy Warren, Rosandra Kaplan, Fernanda Arnaldez)
- -Radiation Oncology and Biology Branches (Drs. Deb Citrin, Murali Cherukuri, Kazu Yamamoto)
- -NeuroOncology Branch (Dr. Mark Gilbert, Dr. Mioara Larion, Victor Ruiz)

NIH-NCI Comparative Oncology Program

- -Christina Mazcko; Dr. Ling Ren; Dr. Shan Huang
- -Dr. Hongsheng Wang
- -Christine Tran Hoang
- -Anusha Kambala

Vyriad/Mayo Clinic (Drs. Russell, Naik, Peng, Federspiel)

NCI Division for Cancer Treatment & Diagnosis (DCTD)

NIH Divisions of Veterinary Resources (DVR) and Radiation Safety (DRS)

NIH Investigational Probe Development Center (IPDC)

COTC member institutions, investigators, and support staff: past, present and future

www.cancer.gov/espanol

Challenges and Opportunities in Developing Non-clinical Models for Immuno-oncology

Lei Zheng, M.D., Ph.D.

Associate Professor of Oncology and Surgery

Tumor Immunology Program, Department of Oncology

Co-Director, The Precision Medicine Center of Excellence for Pancreatic Cancer

JOHNS HOPKINS

FDA-Approved Immune-Oncology Agents

Class	Mechanism of action	Agent's name	Approval (FDA)	Cancer indication
Cancer vaccines (patient's dendritic cell)	Autologous CD54+ cells activated with recombinant PAP-GM- CSF (prostatic acid phosphatase linked to granulocyte- macrophage colony- stimulating factor)	Sipuleucel-T (Provagen®)	2010	Prostate
Immunomodulatory monoclonal antibodies	Anti-CTLA-4 (IgG1)	Ipilimumab (Yervoy®)	2010	Melanoma
(blockade of checkpoint inhibitors)	Anti-PD-1 (IgG4)	Pembrolizumab (Keytruda®)	2014–2017	Melanoma; nonsmall cell lung cancer; head and neck squamous cell carcinoma classical Hodgkin lymphoma; urothelial carcinoma; microsatellite instability-high cancer; colorectal cancer; gastric or gastroesophageal junction adenocarcinoma
	Anti-PD-1 (IgG4)	Nivolumab (Opdivo®)	2014-2017	Melanoma; nonsmall cell lung cancer; classical Hodgkin lymphoma; renal cell carcinoma; head and neck squamous cell carcinoma; urothelial carcinoma; microsatellite instability-high colon cancer; hepatocellular carcinoma
	Anti-PD-L1 (IgG1 with N298A) mutation)	Atezolizumab (Tecentriq®)	2016	Urothelial carcinoma
	Anti-PD-L1 (IgG1)	Durvalumab (Imfinzi™)	2017	Urothelial carcinoma
	Anti-PD-L1 (IgG1)	Avelumab (Bayencio®)	2017	Merkel cell carcinoma
Bi-specific antibodies (BiTE)	Anti-CD3/CD19 (binding to T cell receptor and CD19 on cancer cells)	Blinatumomab (Blincyto®)	2014	Acute lymphoid leukemia
Oncolytic viruses (talimogene laherparepvec)	Enhanced activity towards tumor cells by genetically modified oncolytic herpes simplex virus type-1 (oHSV-1)	T-Vec (Imly gic®, OncoVEX GM-CSF)	2015	Melanoma
Chimeric antigen receptor T cell (CAR-T) cell therapy	Genetically modified autologous T cells to target and kill tumor cells that express CD19	Tisagenlecleucel (Kymriah®)	2017	Acute lymphoblastic leukemia
	Genetically modified autologous T cells to kill B lymphocytic tumor cells	Axicabtagene ciloleucel (Yescarta®)	2017	Diffuse large B cell lymphoma

Nonclinical model used for Approved Immune-Oncology Agents

	Nonclinical animal model for safety assessment	Preclinical model for anti- tumor assessment
Cancer vaccines (e.g. Sipuleucel-T)	Not available	Syngeneic model
Immunomodulatory monoclonal antibodies (checkpoint inhibitors)	Non-human Primate	Syngeneic model, Knock-in model
Bi-specific antibodies (e.g. BiTE)	Non-human Primate	PDX or CDX model
Oncolytic viruses (e.g. T-VEC)	Wild-type mice and tumor bearing syngeneic mice	PDX, CDX, or Synergic model
Cell Therapy (e.g. CAR-T, TCR-T)	Not available	PDX or CDX
Cytokine (e.g. IL-2)	Non-human Primate	Syngeneic model

Challenges and Lessons Learned

Immune modulatory antibodies

- Species relevance has been an issue
- Affinity of binding to human and cynomolgus monkey PD-1 has been similar for most products
- EC50 for blocking interactions between the PD-1 receptor and its ligands is similar between species
- At exposures well above those seen clinically, there was no clear autoimmunity
- However, autoimmune toxicities were observed in the combination of anti-PD-1 and anti-CTLA-4 antibodies.

Cynomolgus Toxicology Signals with Ipilimumab and Nivolumab Combination

Group M/F	Treatment	Dose	Diarrhea ^a	Mean Spleen Weight ^b (g)		Spleen Pathology ^o	Gastrointestinal Pathology ^d n/N	
		mg/kg n/N		Day 30 M/F	Day 59 M/F	n/N		
1	5/5	saline control	1-3	0/10	3.9/2.8	3.5/3.7	06	0/6
2	5/5	nivolumab + ipilimumab	103	2/10	4,0/3,6	4.3/2.4	2/6	2/6
3	5/5	nivolumab + ipilimumab	5010	4/10	6,1/4,47	7.5/8.2	4/5	3/5

Incidence of repeated diarrhea (number of animals with finding/number of animal examined).

doi:10.1371/journal.pone.0.61779.002

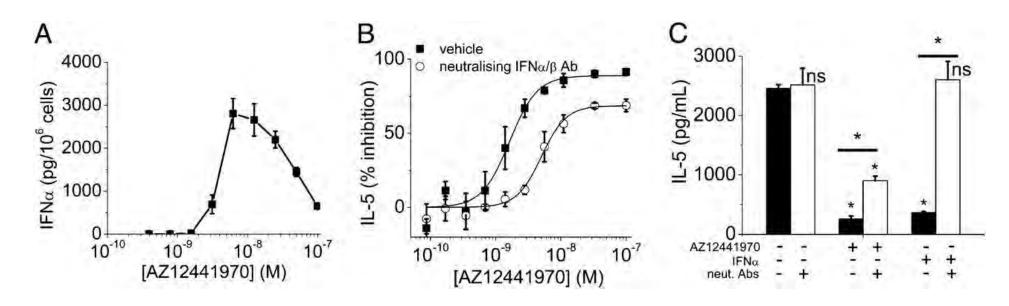
Selby MJ, Engelhardt JJ, Johnston RJ, Lu LS, Han M, et al. (2016) Preclinical Development of Ipilimumab and Nivolumab Combination Immunotherapy: Mouse Tumor Models, In Vitro Functional Studies, and Cynomolgus Macaque Toxicology. PLOS ONE 11(9): e0161779. https://doi.org/10.1371/journal.pone.0161779

 $\underline{http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0161779}$

Mean spleen weight on days 30 and 59; at day 30, 3 monkeys per sex per group with the exception of 2 males in Group 3; at day 59, 2 monkeys per sex per group.

Incidence of lymphoid follicle hypertrophy or marginal zone expansion: number of animals with finding (n) / number of animals examined (N).

^d Minimal, diffuse lymphoplasmacytic inflammation in the Jamina proprie with concurrent enlargement of the colonic or polvic lymph nodes: number of animals with finding (n) / number of animal examined (N).

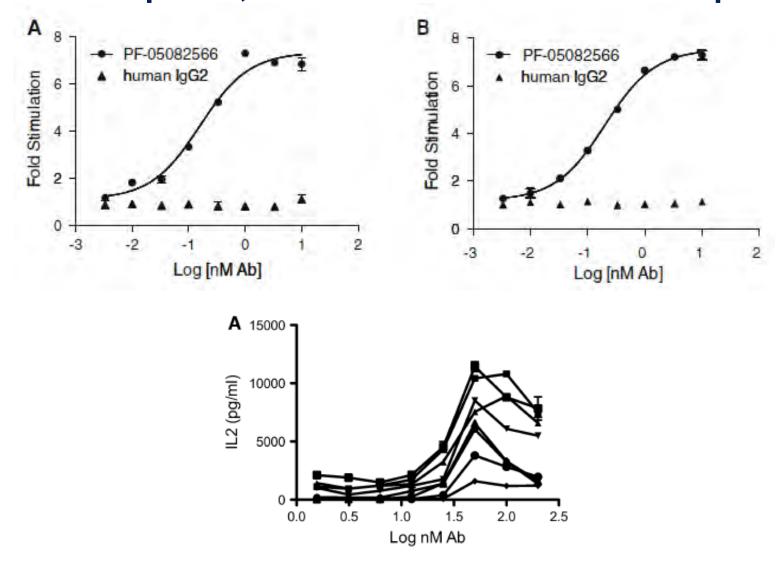

Antagonist vs. Agonist

• An agonistic immune stimulation is considered of higher risk compared to the immune modulation via antagonistic binding to target receptors.

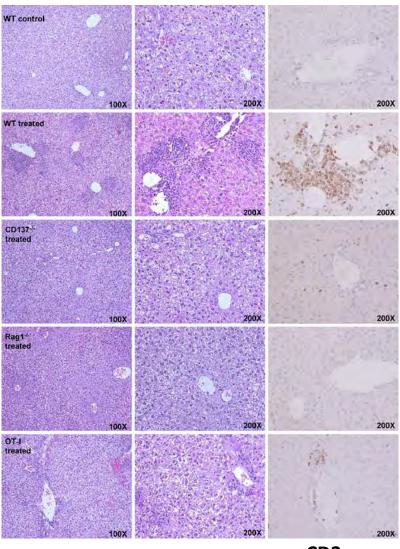
• Antagonists typically exhibit a linear dose response (e.g., anti-CTLA-4 and anti-PD-1 mAbs).

Agonists are often associated with a bell-shape dose response.

TLR7 Agonist Induced INFα in a Bell-Shaped Dose Response



IFN- α dependence of PHA-induced IL-5 production from PBMC. (A) Human PBMC were stimulated with AZ12441970 for 20 h, and IFN- α levels in the medium were determined.


Susan Edwards et al. J Immunol 2013;190:2585-2592

In vitro, Anti-CD137 agonist PF-05082566 induced the NF-kB reporter in linear dose response, but enhanced IL2 in a bell-shaped dose response

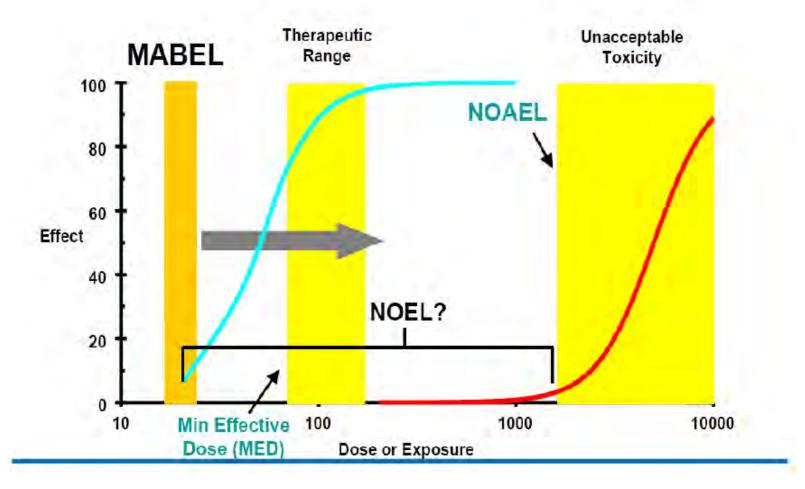
Anti-CD137 agonist antibody induced mononuclear inflammation in the portal spaces of the liver and a marked increase in the CD8+ T cell infiltration in the mouse models

In vitro dose response is often different from in vivo dose response

• In vitro studies of PF-05082566 anti-CD137 agonist antibody demonstrated a bell-shaped IL-2 response curve. However, this could be an artifact of in vitro culture system.

 A bell shaped response curve was not noted in vivo in the huPBL-SCID-Bg xenograft model and in cynomolgus monkeys at doses up to 10 mg/kg.

Neither in vitro nor in vivo cytokine release assay is predictive

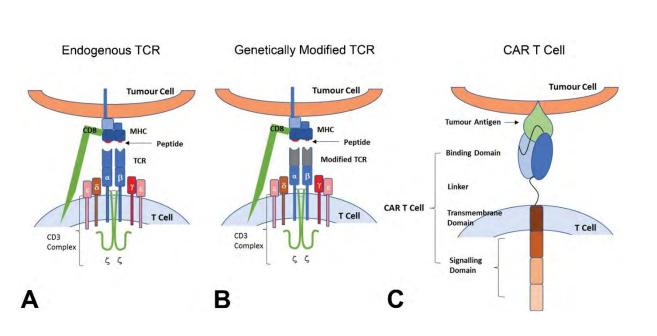

- A negative in vitro cytokine release assay result may not be reliably used to make assumptions about risk for patients.
 - In an in vitro system using soluble TGN1412 anti-CD28 agonist antibodies added to isolated human PBMCs or 1:5 diluted whole blood, no cytokine release was observed.
 - In subsequent experiments TGN1412 did stimulate pro-inflammatory cytokine release in either PBMC or 1:5 diluted whole blood test systems if the antibody was immobilized by air drying to plastic or anti-Fc antibody capture, or if the antibody was added in aqueous phase in the presence of endothelial cells.
- Only low level cytokine release was observed in the primate studies of TGN1412.
- Due to the above results, the First-in-human (FIH) dose may be calculated inappropriately; no proper interval was left between dosing the first and next patients; neither were the investigators prepared for managing the cytokine storms.

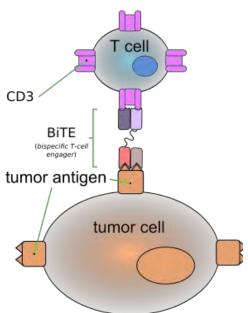
Stebbings et al. "Cytokine storm" in the phase I trial of monoclonal antibody TGN1412: better understanding the causes to improve preclinical testing of immunotherapeutics. J Immunol 2006; 179:3325-31.

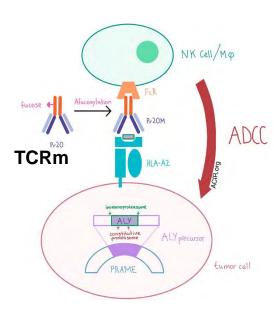
Special Recognition of Immune-Targeting Agonists

- ICH S9 specifically mentions concerns about using standard methods based on toxicology studies alone to set the starting dose of immune agonists:
 - For biopharmaceuticals with immune agonistic properties, selection of the start dose using a minimally anticipated biologic effect level (MABEL) should be considered.
 - Determining a MABEL relies heavily on a variety of pharmacology studies
- However, it is challenging to translating in vitro data to in vivo with immuno-oncology products and would be more challenging for IO combination

Special Recognition of Immune-Targeting Agonists


NOAEL: No Observed Adverse Effect Level


NOEL: No Observed Effect Level


WHAT CAN WE LEARN FROM T CELL THERAPY?

Therapies engaging or mimicking T cells (CAR-T, TCR-T, BiTE, TCRm(imic) antibody)

On-target Off-tumor Toxicity

Table 2. On-target, Off-tumor Toxicities Associated with CAR T-cell Therapies.

Disease	Target	Toxicity	Reference
B-cell malignancies	CD19	B-cell aplasia, which can be maintained long term with reported cases up to 4 years	Grupp et al. (2013); Maude, Frey, et al. (2014); Porter et al. (2015)
Colon cancer	HER2/ERBB2	Lethal pulmonary failure	Morgan et al. (2010)
		Suspected cytokine release following the recognition by the CAR T cells of low levels of ERBB2 on lung epithelial cells	
Renal cancer	Carbonic anhydrase-IX	Liver enzyme disturbances in subjects, reaching National Cancer Institute Common Toxicity Criteria grades 2 to 4	Lamers et al. (2006); Lamers et al. (2013)
		The development of cholestasis due to expression of carboxy anhydrase-IX on bile duct epithelium. Liver biopsies showed T-cell infiltration around the bile ducts	
Non-Hodgkin's lymphoma/ multiple myeloma	κ light chain	Elimination of $\kappa\text{-expressing B}$ and plasma cells However, spares the normal B cells expressing the nontargeted λ light chain, thus potentially minimizing humoral immunity impairment	Ramos et al. (2016)

Note: CAR = chimeric antigen receptor; CD = cluster of differentiation.

Published in: Michaela E. Sharpe; Toxicol Pathol 46, 131-146.

DOI: 10.1177/0192623317752101

Copyright © 2018 Society of Toxicologic Pathology

On-target Off-tumor Toxicity

Table 4. On-target, Off-tumor Toxicities Associated with Genetically Modified TCR T-cell Therapies.

Disease	Target	Toxicity	Reference
Melanoma	MAGE-A3 peptide (KVAELVHFL)	On-target, off-tumor toxicity due to previously undetected MAGE-A expression in the human brain.	Morgan et al. (2013)
		TCR also recognizes peptides: MAGE-A12 (KMAELVHFL) MAGE-A2 (KMVELVHFL) MAGE-A6 (KVAKLVHFL).	
		Three subjects developed neurological toxicity. Two subjects died and I subject made a full neurological recovery	
Melanoma	TCR T-cell therapy	On-target, off-tumor reactivity, destruction of normal	Johnson et al.
	TCR recognizing melanoma antigen MART-I (amino acids 27–35 epitope)	melanocytes in the skin, eye, and ear	(2009)
	TCR recognizing the HLA-A*02-restricted melanoma antigen gp100 (amino acids 154–162 epitope)		
Metastatic colorectal cancer	TCR recognizing the carcinoembryonic antigen (CEA) peptide: (IMIGVLVGV)	On-target, off-tumor reactivity resulting in severe transient inflammatory colitis caused by T-cell reactivity to CEA expression on normal colonic mucosa	Parkhurst et al. (2011)

Note: HLA = human leukocyte antigen; TCR = T-cell receptor.

Published in: Michaela E. Sharpe; *Toxicol Pathol* 46, 131-146. DOI: 10.1177/0192623317752101

Copyright © 2018 Society of Toxicologic Pathology

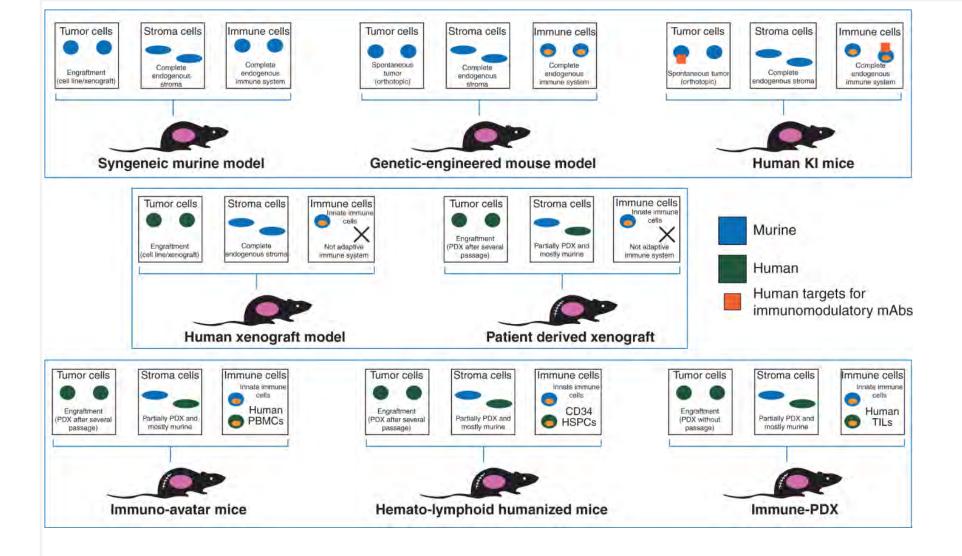
Off-target Off-tumor Toxicity

Table 5. Off-target Toxicities Associated with Genetically Modified TCR T-cell Therapies.

Disease	Target	Tumor Toxicity	Reference
Myeloma and melanoma	An affinity-enhanced TCR recognizing MAGE-A3 (EVDPIGHLY)	Off-target reactivity. Lethal cardiac toxicity. Two subjects died approximately 5 days' postdosing	Linette et al., (2013); Cameron et al. (2013)
		Following adverse events, in vitro investigations revealed cross-recognition of an off-target peptide	

Note: TCR = T-cell receptor.

Published in: Michaela E. Sharpe; *Toxicol Pathol* 46, 131-146.


DOI: 10.1177/0192623317752101

Copyright © 2018 Society of Toxicologic Pathology

What factors have impacts on the toxicity from cytokine release?

- On Target, Off Tumor toxicity: Target expression in non-tumor tissues
- Off Target toxicity: Cross-recognition of an off-target epitope
- Tumor Burden: The burden of targets on tumors

Opportunities

From: Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies

Ann Oncol. 2016;27(7):1190-1198. doi:10.1093/annonc/mdw041

Ann Oncol | © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

Nonclinical model used for Approved Imnuno-Oncology Agents

	Nonclinical animal model for safety assessment	Preclinical model for anti-tumor assessment	Safety assessments in tumor-bearing preclinical models
Cancer vaccines (e.g. Sipuleucel-T)	Not available	Syngeneic model	Toxicity of adjuvant; Treatment schedules
Immunomodulatory monoclonal antibodies (checkpoint inhibitors)	Non-human Primate	Syngeneic model, Knockin model	Autoimmune toxicity, Cytokine release
Bi-specific antibodies (e.g. BiTE)	Non-human Primate	PDX or CDX model	Cytokine release, off- tumor targeting
Oncolytic viruses (e.g. T-VEC)	Wild-type mice and tumor bearing syngeneic mice	PDX, CDX, or Synergic model	Biodistribution, viral shedding and toxicology
Cell Therapy (e.g. CAR-T, TCR-T)	Not available	PDX or CDX	Cytokine release, off- tumor targeting
Cytokine (e.g. IL-2)	Non-human Primate	Syngeneic model	Biodistribution and toxicology

What can we do?

- Low-level cytokine release in nonclinical animal models should prompt more caution.
- Mild symptoms or non-specific symptoms such as weight loss should prompt pathologic examination of toxicities including autoimmune toxicities.
- Humanized mouse models provide an opportunity of assessing treatmentrelated toxicities in tumor-bearing mice under clinically relevant conditions
- Toxicities should be studied in both wild-type animals and tumor-bearing mice being evaluated for anti-tumor efficacies.
- Evaluate the biology and expression of the target in the intended clinical population and models: vigorously examine off-tumor target expressions and off target effects in the preclinical model.

Commonly Modulated Blood Cytokines Associated with Pathological Responses

Pathological response	Cytokines
-----------------------	-----------

Acute-phase response IL1b, IL6, TNF- α

Cytokine storm/release IL2, IL6, IL8, IL10, IFN γ , TNF- α

Fibrosis TGFβ

Hemophagocytic syndrome IFNg, IL1b, IL6, TNF- α

Neutrophilic inflammation IL8, MIP-1, TNF- α

Systemic inflammatory response

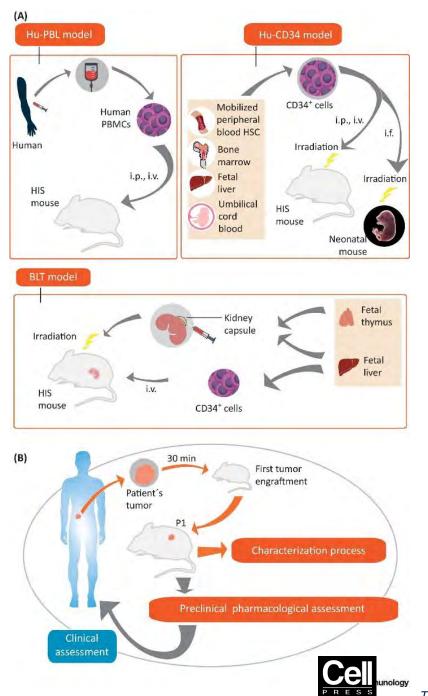
syndrome IL6, MCP-1, TNF- α

Th1 immune response IFNγ, IL2, IL12

Th2 immune response IL4, IL5, IL6, IL10, IL13

What can we do?

- Low-level cytokine release in nonclinical animal models should prompt more caution.
- Mild symptoms or non-specific symptoms such as weight loss should prompt pathologic examination of toxicities including autoimmune toxicities.
- Humanized mouse models provide an opportunity of assessing treatmentrelated toxicities in tumor-bearing mice under clinically relevant conditions
- Toxicities should be studied in both wild-type animals and tumor-bearing mice being evaluated for anti-tumor efficacies.
- Evaluate the biology and expression of the target in the intended clinical population and models: vigorously examine off-tumor target expressions and off target effects in the preclinical model.


Assess autoimmunity

- Use tumor models where the kinetics of tumor regression is slower and/or spontaneous tumor models to allow for more long term administration of immune-modulating agents
- Increase experimental sampling to detect for the presence of biochemical autoimmunity
 - Serum testing for liver damage (ALT, AST)
 - Immunohistochemistry for kidney damage (autoantibodies)
 - Changes in inflammatory cytokine profile (IL-6, TNF)
- Assess combination immunomodulatory agents in strains of mice that are more susceptible to autoimmunity
- Assess the autoimmune adverse reactions by histologic examination

What can we do?

- Low-level cytokine release in nonclinical animal models should prompt more caution.
- Mild symptoms or non-specific symptoms such as weight loss should prompt pathologic examination of toxicities including autoimmune toxicities.
- Humanized mouse models provide an opportunity of assessing treatmentrelated toxicities in tumor-free mice and in tumor-bearing mice under clinically relevant conditions
- Toxicities should be studied in both wild-type animals and tumor-bearing mice being evaluated for anti-tumor efficacies.
- Evaluate the biology and expression of the target in the intended clinical population and models: vigorously examine off-tumor target expressions and off target effects in the preclinical model.

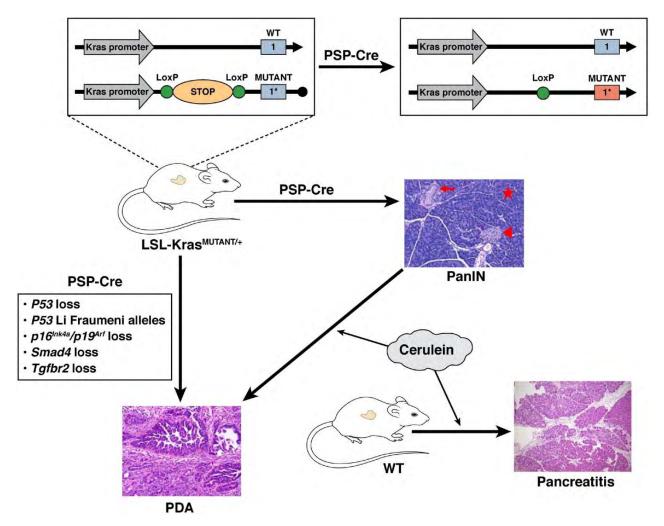
Humanized mice provide an opportunity of examining treatment-induced autoimmunity

Histologic examination of autoimmune toxicities in humanized mice treated with Nivolumab

Adverse Reactions	Observed in BLT/NOG mice in the Nivolumab Pilot Expriment
Pneumonitis	Low dose: 3/4 Medium dose: 2/4 High dose: 2/4
Hepatitis	Low dose: 3/4 Medium dose: 3/4 High dose: 4/4
Nephritis	Low dose: 1/4 Medium dose: 1/4 High dose: 1/4
Rash/Dermatitis	Low dose: 1/4 Medium dose: 3/4 High dose: 2/4
Adrenalitis	Low dose: 1/4 High dose: 1/4

What can we do?

- Low-level cytokine release in nonclinical animal models should prompt more caution.
- Mild symptoms or non-specific symptoms such as weight loss should prompt pathologic examination of toxicities including autoimmune toxicities.
- Humanized mouse models provide an opportunity of assessing treatmentrelated toxicities in tumor-bearing mice under clinically relevant conditions
- Toxicities should be studied in both wild-type animals and tumor-bearing mice being evaluated for anti-tumor efficacies.
- Evaluate the biology and expression of the target in the intended clinical population and models: vigorously examine off-tumor target expressions and off target effects in the preclinical model.


These would be applied to cytokines and immune agonist ligands

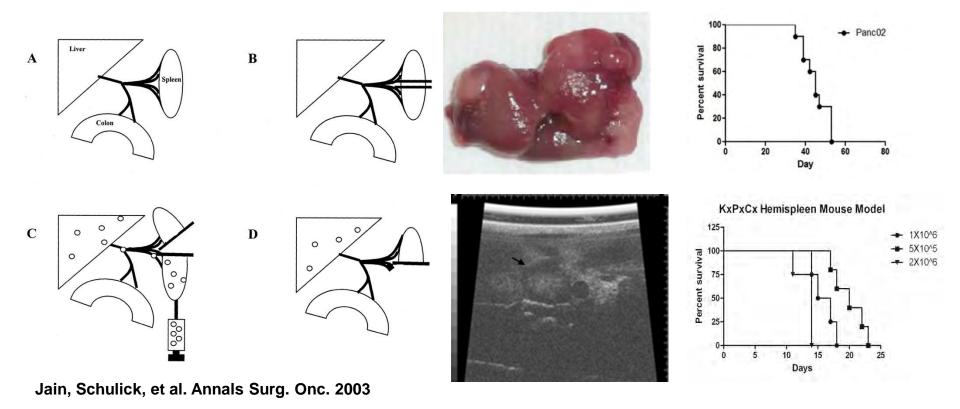
- In Vivo Anti-tumor Studies. The antitumor activity of T-VEC was studied in the xenograft model or immunocompetent syngeneic mouse model. The antitumoral effects of T-VEC after local intratumor injection or occurring systemically after injection in the contralateral, tumor-free animal flank were studied.
- Nonclinical pharmacokinetics evaluation included single-dose and repeated-dose studies addressing biodistribution, viral shedding, and replication of T-VEC.
 - <u>In vivo biodistribution</u> evaluated in <u>naive or tumor-bearing</u> BALB/c mice following single or multiple subcutaneous, intravenous, and intratumoral dosing.
 - <u>Viral shedding</u> in BALB/c mice.

Toxicology


- Repeated-dose studies through the **intratumoral route** administration under clinically relevant conditions, e.g., **in tumor-bearing animals that allow viral replication as anticipated in patients**
- Repeated-dose studies in tumor-free mice, after s.c. and intravenous (i.v.) routes of administration, to
 inform the safety of T-VEC under conditions that are similar to the planned clinical dosing route in a
 study unconfounded by the presence of a tumor.
- In two of the pivotal repeated-dose studies, a group of high dose animals was used to assess biodistribution.

Genetically Engineered (KPC) Mouse Models Resemble Spontaneous Human Pancreatic Adenocarcinoma Pathogenesis

Orthotopic pancreatic tumor transplant model



- Study uniformly implanted PDA in a heterogeneous pancreatic microenvironment
- Spontaneous metastases to liver, peritoneum and lung

Zheng et al. Plos One 2011; Foley et al. Science Signaling 2015

Syngeneic Hepatic Metastasis Model by Hemispleen Injection

Soares, Foley, Edil, Zheng, et al. JoVE. 2013

- Spontaneous formation of metastases in the liver microenvironment
- Narrow time window for metastasis formation; suitable for using survival as the endpoint
- Intratumoral injection of therapeutic agents

Intratumoral injection of an immune agonist under the ultrasound guidance for anti-tumor efficacy, abscopal effect, and toxicity assessment in comparison to other routes of drug administration

Ultrasound measurement of liver metastases

Intratumoral injection

What can we do?

- Low-level cytokine release in nonclinical animal models should prompt more caution.
- Mild symptoms or non-specific symptoms such as weight loss should prompt pathologic examination of toxicities including autoimmune toxicities.
- Humanized mouse models provide an opportunity of assessing treatmentrelated toxicities in tumor-bearing mice under clinically relevant conditions
- Toxicities should be studied in both wild-type animals and tumor-bearing mice being evaluated for anti-tumor efficacies.
- Evaluate the biology and expression of the target in the intended clinical population and models: vigorously examine off-tumor target expressions and off target effects in the preclinical model.

Determine the FIH dose

- Does response in cytokine release
 - Receptors of immune agonists are often only transiently expressed on activated T cells
- In vivo toxicology study
 - Healthy non-human primates have negligible activated T cells due to lack of relevant antigens.
- Receptor occupancy (RO)
 - Relationships between peripheral and tissue RO, between RO and efficacy/toxicity, between tumor-free model and tumor-bearing model are not well established.
- Minimal Pharmacological active dose (MPAD)
 - Difference in MPAD between mouse models and human patients. MPAD in mouse models usually projects to a FIH dose level far from the effective dose in human patients.

Summary

- Species relevance is an issue, but not the main issue. Neither in vitro nor in vivo cytokine release assay is predictive; however, low-level cytokine release in nonclinical animal models should prompt more caution
- Increase experimental sampling to detect for the presence of biochemical autoimmunity and assess the autoimmune adverse reactions by histologic examination
- Academic tumor models, particularly the spontaneous tumor models and humanized mice provide the opportunity of assessing the toxicities with clinically relevant conditions and routes of drug administration.
- Evaluate the biology and expression of the target in the intended clinical population and tumor-bearing preclinical models
- Combine multiple measurements to determine the FIH dose. No one size fits all.

U.S. FOOD & DRUG AACH American Association for Cancer Research **ADMINISTRATION**

American Association

G CURES TOGETHER

Panel Discussion:

Moderator:

Haleh Saber, PhD

Panelists:

Marcela V. Maus, MD, PhD Sarah Javaid, PhD Gregory L. Beatty, MD, PhD Lei Zheng, MD, PhD

U.S. FOOD & DRUG AACH American Association for Cancer Research **ADMINISTRATION**

American Association

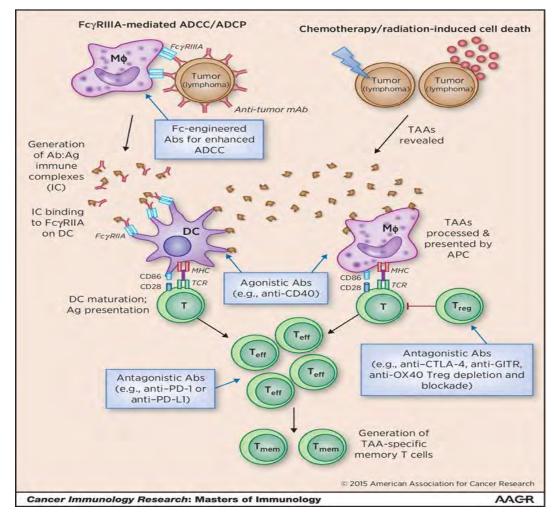
G CURES TOGETHER

Speakers:

Danuta Herzyk, PhD Helen Haggerty, PhD Robert Li, PhD Mariam Eljanne, PhD

ANIMAL MODELS IN IMMUNO-ONCOLOGY DRUG DEVELOPMENT

Danuta Herzyk, PhD Merck Research Laboratories


FDA-AACR WORKSHOP SEPTEMBER 6TH, 2018

Immunotherapy in cancer: Mechanisms of Action for efficacy vs. immune related Adverse Effects (irAEs)

- Similar mechanisms contribute to efficacy and toxicity
- Stimulation of a diffuse T cell repertoire expansion counteracts tumor growth but at the same time reduces self tolerance and can lead to damage of healthy organs

Clinical safety data for Checkpoint Inhibitors (CPIs)

- A retrospective examination of data for CTLA4 and PD-1/PD-L1 blockers
 (Puzanov et al. J ImmunoTherapy of Cancer, 2017)
- Main target organs for irAEs:
 - Skin, gut, endocrine, lung and musculoskeletal (e.g., dermatitis, colitis, hepatitis, hypophysitis, thyroiditis, pneumonitis, inflammatory arthritis)
- The majority of irAEs are mild to moderate in severity
- irAEs typically have a delayed onset and prolonged duration
- Greater severity with anti-CTLA4 than anti-PD-1/PD-L1 therapy
- Toxicity varies between the adjuvant and metastatic disease settings
- Cancer type may be a factor for triggering certain irAEs, e.g., for pembrolizumab pneumonitis is reported chiefly in NSCLC, while uveitis is reported chiefly in melanoma

Perspectives from FDA on non-clinical data to support Immuno-Oncology (IO) Biologics

- A retrospective examination of toxicology studies submitted to the INDs in support of FIH studies indicated that toxicities in monkeys were minimal and did not predict adverse effects in patients (Saber, Gudi, et al. 2016)
- However, not all IO agents are "equal"
 - Targeting co-stimulatory / co-inhibitory receptors requires concurrent antigen-specific T cell receptor (TCR) signaling for T cell activation (e.g., checkpoint inhibitors)
 - Associated with low incidence toxicity (in animals and patients)
 - Targeting T cells recruitment to tumor cells by simultaneous binding of tumor-associated antigens and a T cell specific antigen (e.g., CD3) induces T cell activation independent of antigen-specific TCR signaling, and results in strong acute cytokine-mediated responses (e.g., BITEs, CAR-T)
 - Associated with potent toxicity (in animals and patients)

Framing the safety question

- Focus on biologic CPIs: "immune stimulation" by restoring active T-cell immune surveillance
- In general, safety risks for immune activating agents are predictable based on MOA associated with pro-inflammatory responses, therefore, immune-related "-itis" in the clinic could be expected, regardless of animal toxicology data
- Still, it is unclear which adverse effects in patients would be of greatest concern [as not predicted by animal studies]
 - MOA-mediated "-itis" in target tissues or some unexpected/unknown toxicities?
- Are the concerns about predicting risks associated with a single IO agent or with IO combination therapies?
 - If the main concern is about combinations
 - Is it for combination of multiple biologic CPIs OR CPIs with small molecule drugs?

A closer look at animal data with CPIs

Differential toxicity profiles for different CPIs were demonstrated in knockout mice

CTLA4 blockade (single target)	PD-1/PD-L1 blockade (single target)	LAG-3 blockade (single target)
KO miceEarly onset, lethal autoimmune phenotype	 Late onset, low incidence of minimal to mild focal lymphocytic cellular infiltrates in multiple tissues (salivary, pancreas, thyroid, lung, heart, kidney, liver, skin and/or adrenal) 	 Late onset, low incidence of minimal to mild focal lymphocytic cellular infiltrates in multiple tissues (salivary, pancreas, thyroid, lung, heart, kidney, liver, skin and/or adrenal)

A closer look at animal data with CPIs

Differential toxicity profiles for different CPIs were demonstrated in NHP studies

Cynomolgus monkeys Toxic at > 10 mg/kg/week Pharmacodynamics (PD) "delayed" relative to a dose administration Dose- and time-dependent incidence and severity of diarrhea (leading to moribund conditions) and large intestine inflammation, skin changes Cynomolgus monkeys Well tolerated up to 200 mg/kg/week Well tolerated up to 125 mg/kg/week Te evident during dosing period Findings minimal but dose-dependent Findings minimal but dose-dependent	Differential toxicity profiles for different CPIS were demonstrated in NHP studies			
 Toxic at > 10 mg/kg/week Pharmacodynamics			la de la companya de	
hadigraund changes commonly coon in monlous	 Toxic at > 10 mg/kg/week Pharmacodynam (PD) "delayed" relative to a dose administration Dose- and time- dependent incid and severity of diarrhea (leading moribund condit and large intestir inflammation, sk 	ence to ions)	 Well tolerated up to 200 mg/kg/week Target Engagement (TE) evident for months after stopping dosing Very low incidence and dose-independent (one or two out of 24-30 exposed animals) findings of mononuclear cellular infiltrates (primarily lymphocytes and/or histiocytes) in scattered organs/tissues similar to the spontaneously occurring changes (background) commonly seen in monkeys Effects (v. low incidence) seen in animals following treatment-free 	 Well tolerated up to 125 mg/kg/week TE evident during dosing period Findings minimal but dose-dependent Red skin discoloration (without histologic correlates and reversible): head, axillary regions, thoracic region, abdomen, inguinal region and/or the ventral and/or dorsal surfaces of the hind limbs Very slight and transient decreased albumin concentration and albumin to globulin ratio, increased fibrinogen and increased white blood cell and neutrophil counts Mononuclear cellular infiltrates around occasional vessels of the meninges and/or choroid plexus of

Composite analysis of animal data with CPI combos

Differential toxicity between single and dual CPI blockade was observed in KO mice

CTLA4 – PD-1 dual blockade	LAG-3 – PD-1 dual blockade
 cKO Mice (C57BL\6; 8-10 weeks old) Increased incidence and severity of lymphocytic infiltrates in multiple tissues Mild to marked lymphoid proliferation in multiple lymphoid tissues (lymph nodes, Peyer's patches) compared to age-matched single KO 	 KO Mice (C57BL\6; 8-10 weeks old) Significantly increased incidence and severity (mild-marked) of lymphocytic infiltrates with changes to parenchymal tissue in thyroid, pancreas, salivary (acinar atrophy); heart (fibrosis, myocardial degeneration) compared to agematched single KO

Composite analysis of animal data with CPI combos

Differential toxicity between single and dual CPI blockade was observed in NHP studies

CTLA4 – PD-1 dual blockade	LAG-3 – PD-1 dual blockade
 Cynomolgus monkeys Increased incidence and severity of GI and skin toxicities ("colitis and dermatitis") 	 Cynomolgus or Rhesus monkeys (mAbs or other constructs) Similar findings (skin, inflammatory infiltrates in meninges and/or choroid plexus of the brain) to anti-LAG-3 alone but with increased incidence and/or severity, and at lower doses compared to the single agent Findings (consistent with PD-1 blockade) not seen with anti-LAG-3 alone One animal (out of 32 exposed) had diarrhea (leading to moribund conditions) ~7 weeks after the last dose received One animal (out of 30 exposed) had inflammatory infiltrates in thyroid (very slight with no signs of any clinical or biochemical alterations) ~8 weeks after the last dose received

What do animal data tell us?

- KO mice data are generally consistent with MOA-related findings
- NHP toxicology data are generally consistent with expected safety profiles
 - -Findings related to immune activation driven by MOA
 - -Wide range of tissues affected but low incidence and severity of findings (i.e. minimal exacerbation of background inflammation)
 - Similar (?) to clinically observed toxicity profile for single IO agent

Most Frequently Reported (≥0.2%) Serious Adverse Events Considered Drug-Related in Patients Treated with Pembrolizumab (melanoma and lung cancer)

	Reference Safety Dataset for		
Dueferued Terre	Pembro	Pembrolizumab	
Preferred Term	n	(%)	
Participants in population	2799		
Pneumonitis	44	(1.6)	
Colitis	25	(0.9)	
Diarrhoea	17	(0.6)	
Pyrexia	10	(0.4)	
Autoimmune hepatitis	8	(0.3)	
Pneumonia	8	(0.3)	
Adrenal insufficiency	7	(0.3)	
Hyponatraemia	7	(0.3)	
Dyspnoea	6	(0.2)	
Hyperthyroidism	6	(0.2)	
Nausea	6	(0.2)	

What do animal data tell us?

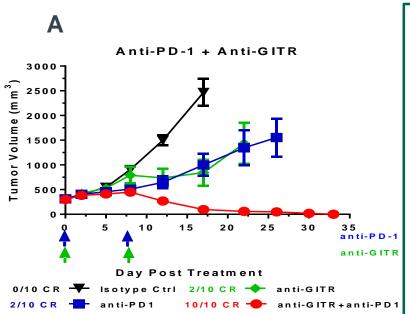
- KO mice data are generally consistent with MOA-related findings
- NHP toxicology studies (without immune stimulation by vaccination) are generally consistent with clinical toxicity profiles
 - Findings related to immune activation driven by MOA
 - Wide range of tissues affected but low incidence and severity of findings (i.e. minimal exacerbation of background inflammation)
 - Differentiation of toxicity between molecules
 - anti-CTLA4 > anti-LAG-3 > anti-PD-1
 - Combined treatments indicate [anticipated] increased toxicity compared to treatments with single agents

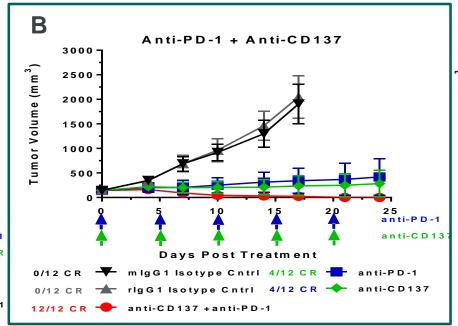
Why are toxicology studies with CPIs viewed as non-predictive for AEs observed in the clinic?

- Using conventional risk assessment established in toxicology, many findings in NHP studies are non-adverse
 - The effects often represent PD response and are not detrimental in the context of animal health status (physiology and organ/tissue structure)
 - It may be difficult to determine a threshold between PD and toxicity
 - Need to pay attention to both adverse and non-adverse findings
- The immune system is the most heterogeneous organ in both humans and animals
 - Highly variable individual sensitivity to the modulation of the immune system
 - Additional caveats: different immune status in cancer disease vs. healthy host
 - Vaccination of animals during the treatment with IO agents is postulated as more relevant paradigm
 - Does vaccination decrease or increase variability in response to IO agents?

Are toxicology studies with IO agents helpful?

- Animal data, including the lack of toxicity / NOAEL at the highest dose tested in relevant species (when Receptor Occupancy / Target Engagement / PharmacoDynamics is demonstrated), inform safety profile of IO agents
 - A wide range of exposure (e.g., 2 logs) in the context of projected efficacious dose/exposure in patients
 - Insights into expected vs. unexpected changes
- FIH starting dose is based on integrative analysis of pharmacology data rather than NOAEL
 - In vitro human functional data (e.g., EC50)
 - Pharmacologically Active Dose in animal models
 - RO / TE / PD data in NHP and/or mouse




Efficacy studies in tumor-bearing mouse models

- Established syngeneic mouse tumor models are selected based on feasibility and relevance to cancer type in humans
- Tumor growth is rapid with survival rate of ~3 weeks after tumor implantation
 - Mouse models may be useful to evaluate potential antagonistic effects of combined therapies
- In the presence of effective anti-tumor response in mouse models, safety signals (tolerability, body weight) are hardly detectable

Combination studies of IO biologics

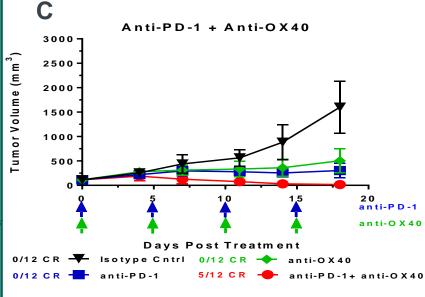


Table 2. Treatment-emergent adverse events in ≥15% of patients

	Pembrolizumab (2 mg/kg) + utomilumab ($N = 23$)			
	Treatment emergent		Treatment related	
Adverse event ^a	All grades	Grade 3-4 ^b	All grades	Grade 3-4
Fatigue	10 (43.5)	1(4.3)	8 (34.8)	0
Rash	10 (43.5)	0	8 (34.8)	0
Cough	8 (34.8)	0	1 (4.3)	0
Decreased appetite	7 (30.4)	0	3 (13.0)	0
Nausea	7 (30.4)	0	3 (13.0)	0
Constipation	6 (26.1)	0	1 (4.3)	0
Pruritus	6 (26.1)	0	5 (21.7)	0
Pyrexia	5 (21.7)	0	3 (13.0)	0
Vomiting	5 (21.7)	0	1 (4.3)	0
Anemia	4 (17.4)	3 (13)	0	0
Dyspepsia	4 (17.4)	0	2 (8.7)	0
Upper respiratory tract infection	4 (17.4)	0	0	0

[&]quot;None of the patients discontinued due to treatment-related adverse events.

- No increased toxicity for anti-PD-1 combos with anti-GITR, anti-CD137, or anti-OX4
 - ✓ Consistent with clinical data in patients in early clinical studies
- In contrast to data for anti-CTLA4/PD-1 combo

bTreatment-related grade 3 adverse events reported in this study included adrenal insufficiency and hypokalemia (n = 1 each).

Combinations of IO biologics with small molecules

- Clinical reports of increased severity and incidence of irAEs compared to monotherapy
 - Grade 1/2 reactions managed with anti-inflammatory agents
 - Grade 3/4 reactions required cessation of treatment

Examples

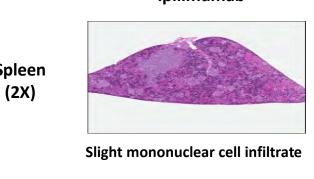
- Ipilimumab + Vemurafenib Liver (Ribas, 2013)
- Ipilimumab + Dacarbazine Liver, GI, Skin (Bondarenko et al., 2011)
- Pembrolizumab + Dabrafenib or Trametinib Liver (Internal Communication)
- Pembrolizumab + Preladenant Liver (Internal Communication)
- Difficult to recapitulate in animal studies

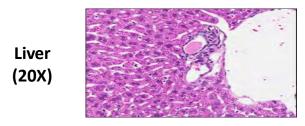
Animal studies with IO biologics and small molecules

• In contrast to cancer patients treated with ipilimumab and vemurafenib, no hepatotoxicity in WT C57BL6 Mice with short-term (2 week) R_x combination of murine anti-CTLA4 + vemurafenib

Study	Group	Vemu AUC ₀₋₂₄ uM*hr	Anti-CTLA4 AUC ₀₋₂₄ uM*hr	Results	
#1	Vemu alone	4290	-	No treatment related liver injury or exacerbation associated with anti-CTLA4	
#1	Vemu + anti-CTLA4 IgG1	4899	3650		
#2	Vemu alone	5049	-	No treatment related liver injury or	
#2	Vemu + anti-CTLA4 IgG2a	4562	2020	exacerbation associated with anti-CTLA4	
#2	Vemu alone	4711	-	No treatment related liver injury or exacerbation associated with anti-CTLA4	
#3	Vemu + anti-CTLA4 IgG2b	4637	6340		

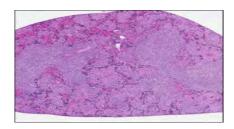
• In contrast to cancer patients treated with pembrolizumab and preladenant, no exacerbation of hepatotoxicity in Dogs with long-term (3 month) R_x combination of canine anti-PD-1 + preladenant

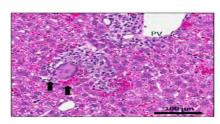

		Liver Enzymes (SW 1-13)	Liver Histology (SW 13)
	Preladenant alone	AST (2-9X), ALT (4-27X), ALP (5-8X), GLDH (6-78X)	Hepatocellular degeneration and inflammatory changes in 2 out of 3 animals
ic	Preladenant + anti-PD-1	AST and ALT (2X), GLDH (4X)	Hepatocellular degeneration and inflammatory changes in 1 out of 3 animals



Do humanized mouse models help?

Ipilimumab 10 mg/kg (single dose IP) and Vemurafenib 600 mg/kg/day (14 days PO) **Combination Study in Humanized Immune System Mice**


Ipilimumab Spleen (2X) Slight mononuclear cell infiltrate



Minimal, focal infiltrate of lymphocytes in portal region

Ipilimumab + Vemurafenib

Increased size, marked infiltrate composed of lymphocytes and macrophages with multinucleated giant cells

Moderate infiltrate of lymphocytes and macrophages with multinucleated giant cells

- ✓ Mice engrafted with cord blood derived CD34⁺ hematopoietic stem cells
- √ No observations in control humanized mice receiving vehicle (14 days PO)
- ✓ No hepatocellular injury but moderate to marked tissue infiltration by immune cells in liver and spleen
- ✓ Lack of injury to lung or GI (indication the absence of GVHD related change)

Challenges with nonclinical combination studies

Small molecule (SM) drugs

- Often associated with "traditional" off-target toxicities (liver, cardiac, renal, etc.)
- Metabolized, transported and distributed very differently from biologics
- Most are characterized in rats and dogs

Biologic drugs

- Associated with on-target MOA-related / exaggerated pharmacology findings
- Characterized in mice and monkeys

- We thought the problem was that pharmacology combination studies were conducted in tumor-bearing mice or genetically-modified mice (in which toxicity/metabolism profiles of SM drugs are largely unknown, and background histology not understood)
 - However, anti-PD-1/preladenant study in dogs (the "right" tox species for this molecule) did not increase predictivity...

Summary of nonclinical data for CPIs

- While animal data cannot predict which specific "-itis" cancer patients will develop, they provide insight to signals for potential risk.
- In patients, individual genetics, underlying disease, co-therapies and previous therapy history (e.g., radiotherapy) likely contribute to the incidence and/or type of irAEs that manifest, or accelerate the emergence of preexisting [asymptomatic] conditions.

High Level View

- Safety evaluation of IO agents in toxicology studies provide "directional" risk assessment rather than prediction of adverse effects in patients.
- There are many examples of correctly identified risk based on the directional evaluation as well as a few examples of unpredicted toxicity in the clinic.
- The main gap in data is for IO Biologic SM combinations, for which severe/acute toxicities in the clinic appear to be more likely than for IO Biologic combinations.

THANK YOU!

FDA – BioSafe - AACR Organizers

AND *My Colleagues:*

Discovery Immunology and Oncology

- Elaine Pinheiro
- Brian Long
- Michael Rosenzweig
- Rene De Waal Malefyt

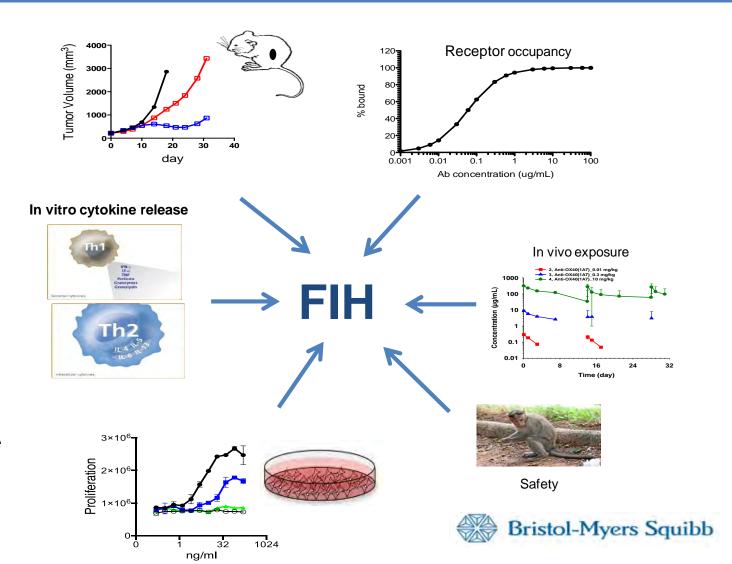
Nonclinical Safety Assessment

- Lisa LaFranco-Scheuch
- James Monroe
- Michael Oropallo
- Claudette Fuller
- Paul Ciaccio
- Valerie Hamilton
- Judith Prescott
- Frank Sistare

Use of Antigen Challenge in Non-Human Primate to Assess Pharmacodynamic Activity and Translation to Clinic

> Helen G. Haggerty, PhD Bristol-Myers Squibb

Immune system of healthy monkeys is not that of tumor bearing mice nor cancer patients


- Many mAbs to checkpoint inhibitors and costimulatory agonists
 NHP only relevant pharamacologic model
- NHP model most used to assess safety for human dosing, but has under predicted toxicities observed in patients
 - Healthy animals more quiescent immune system
 - Many targets transiently expressed upon immune activation
 - Differences in FcR binding affinities and/or activities between species
- Toxicities generally on-target, immune-mediated due to pharmacology
- Therefore, to assess safety, aid in setting safe starting dose and designing clinical trial, it is important to understand the biology of target and predicted pharmacologic dose response in humans

Determining FIH Starting Dose

- □ NOAEL/HNSTD approach often not appropriate
- Rather established via MABEL or PAD which integrates totality of nonclinical data
 - MOA/pharmacology
 - Animals in vitro/ in vivo
 - PK/PD modeling
 - Receptor occupancy (RO)
 - Human In vitro assays
- Biomarkers of immune activation in NHP
 - Improve translatability by correlating exposure, RO, PD activity, and ADA in one test system
 - Help establish pharmacologically active dose and dose response
 - Support relevance of nonclinical model
 - Help identify clinical biomarkers

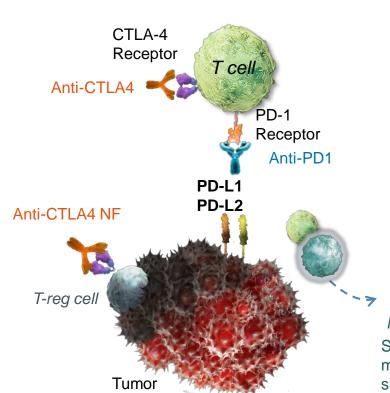
Assessing Immunopharmacology in Nonclinical Studies

4

- Efficacy demonstrated in mouse tumor models with surrogate mAbs
- Tumor bearing monkey models not feasible and immune system in healthy monkey often does not provide the appropriate context to fully characterize IO agents biological activity
- Immunizing NHP with antigen, monitor alterations in immune response due to treatment and correlate with exposure, receptor occupancy and expression, and toxicity findings

Antigen Challenge

T-cell-dependent antibody response (TDAR)


- Immunize with antigen, collect serum, measure antigen-specific antibodies
- Many different immunogens/vaccines
 can be used to elicit antibody response
 - Keyhole limpet hemocyanin (KLH)
 - Multimeric immunogenic protein
 - Primary and secondary responses
 - Commonly used to assess immune suppression
 - Suboptimal dose used to assess for immune enhancement
 - Tetanus toxoid recall responses
- Responses are CD4-mediated

Recombinant adenovirus serotype 5 (Ad-5) vectors

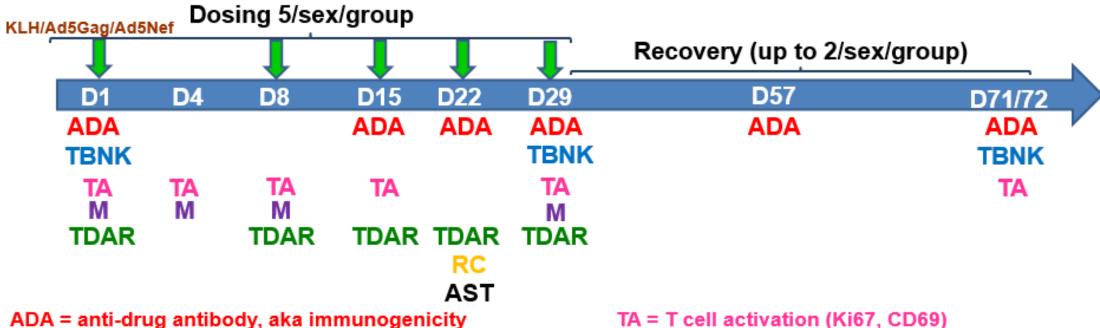
- Cytotoxic (CD8) T cells play a critical role in cancer immunity
- □ Viral immune responses are CD8-mediated
- Express viral proteins in replication incompetent vector
 - Adenovirus 5 encoding gag and nef SIV peptides
- MHC haplotyping is required to select for monkeys with specific alleles for recognition of immunodominant epitopes
 - >80% of Mauritian Cynos express Mafa-A1*063
- Immunize with viral particles/vector
- Ability to measure antigen-specific T cells using viral peptide tetramer analysis

Case Study: Anti-CTLA-4 mAb (Ipilimumab) with a non-fucosylated Fc

CTLA4NF - ipilimumab with enhanced Fc effector function

Scientific Rationale for Anti-CTLA4-NF:

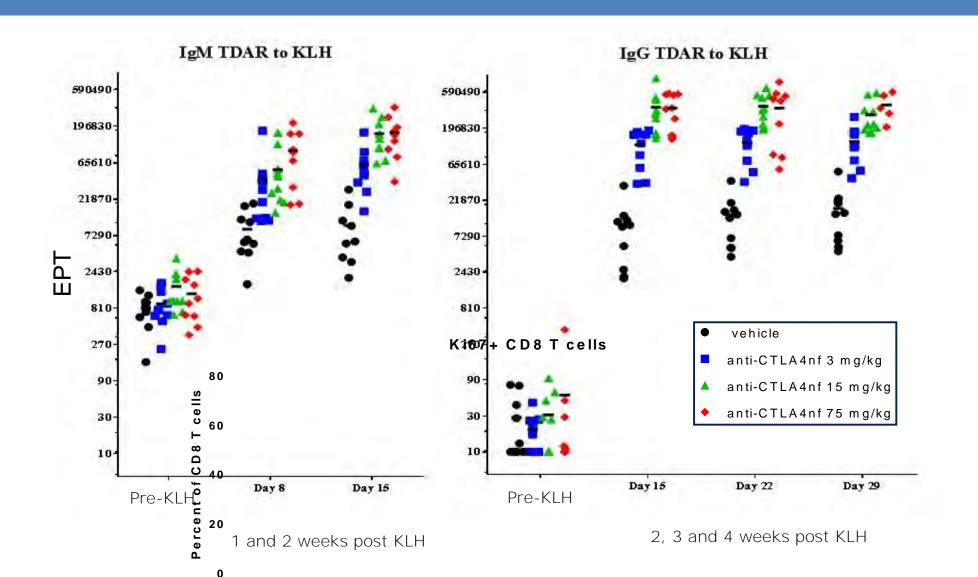
- Blocks CTLA4 <u>similar</u> to IPI to help stimulate T-cell activation/ proliferation
- Enhanced FcRγ (CD16) binding to NK/T cells, macrophages/DC, PMNs to increase immune cell infiltration
- Increases intratumoral T-reg depletion to reverse immune-suppression


Memory T cell

Some activated T cells become memory cells that can support subsequent immune responses by recognizing the tumor antigen

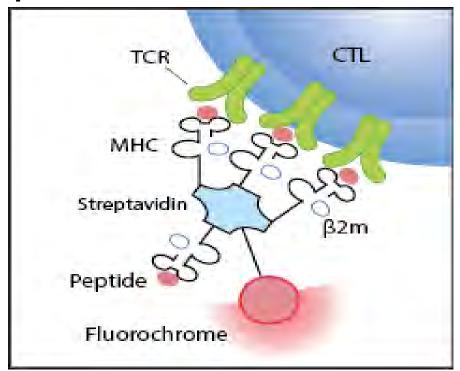
Monkey Toxicity and PD Study Design

- CTLA4-NF mAb: 3, 15, or 75 mg/kg
 - Doses administered weekly to 3-5 monkeys/sex/group
 - □ 3/sex/group necropsied on Day 30; up to 2/sex/group necropsied after 6-week recovery



ADA = anti-drug antibody, aka immunogenicity
TBNK = immunophenotyping for T cells, B cells, NK cells
M = flow cytometric immunophenotyping for
activated/Treg/memory T cell populations

TDAR = T cell dependent antibody response to KLH
AST = Antigen specific T cells (tetramer staining)
RC = Ex vivo recall to KLH, Gag, Nef


T-cell-dependent Antibody Response to KLH

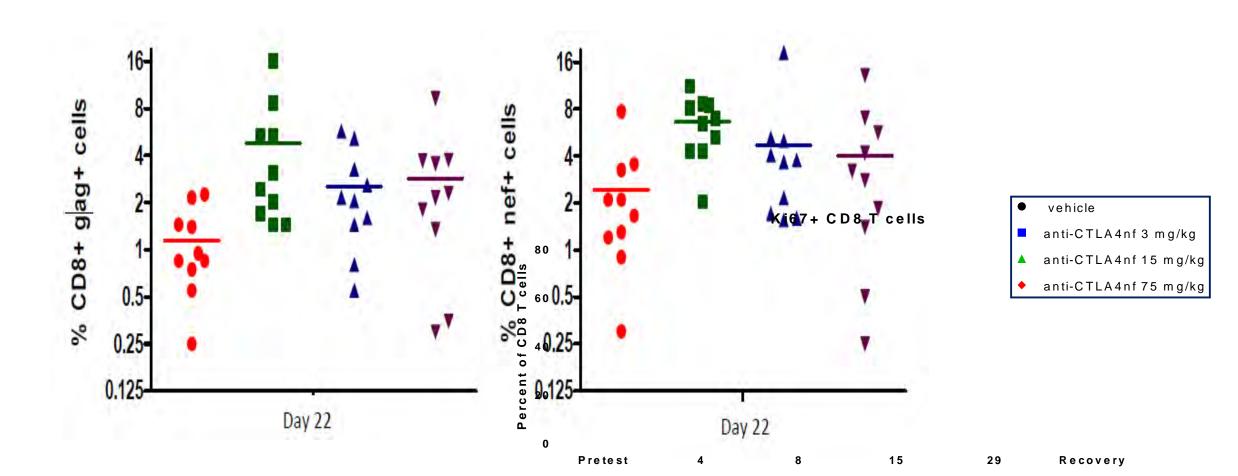
Antigen-Specific T-cell Phenotyping

Ad5 peptide-specific T cells identified using fluorochrome-conjugated MHC tetramers loaded with peptides

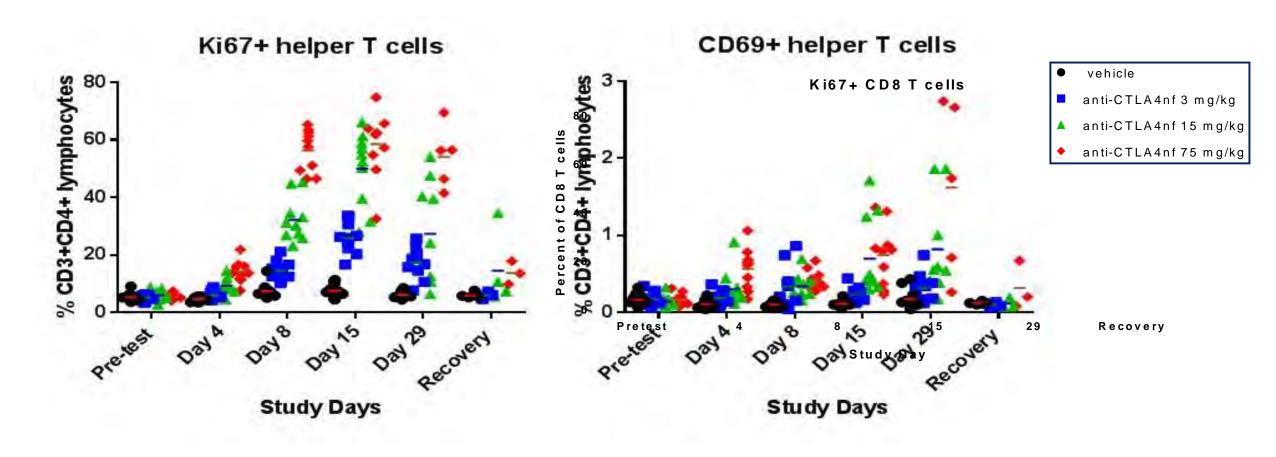
Immunize with Ad5-gag and Ad5-nef

Draw blood in EDTA

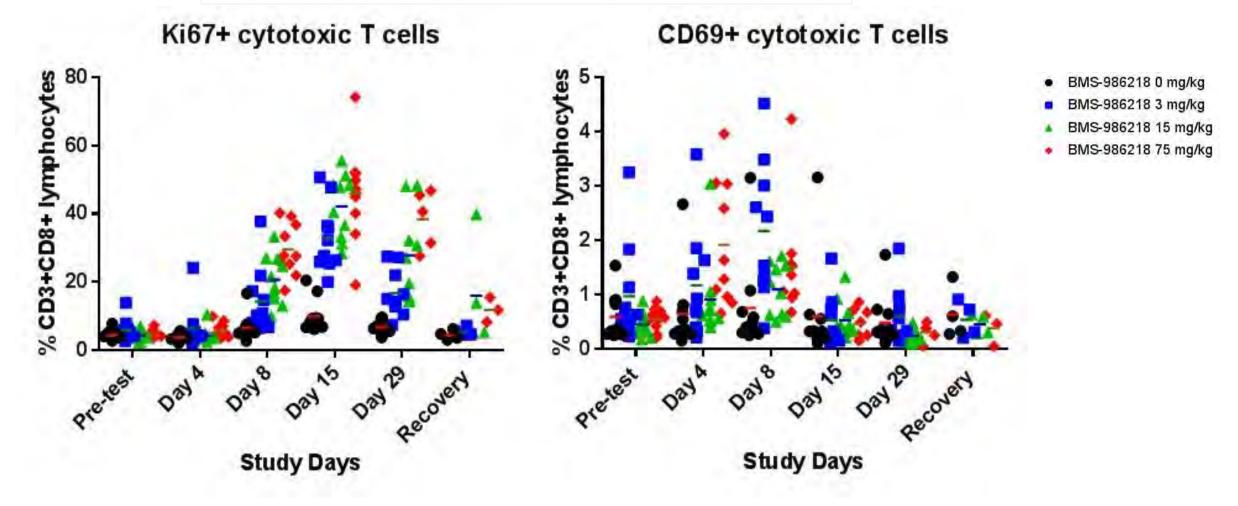
Immuno-stain with T-cell specific markers and flourochrome conjugated MHC1 tetramers loaded with Gag and Nef peptides

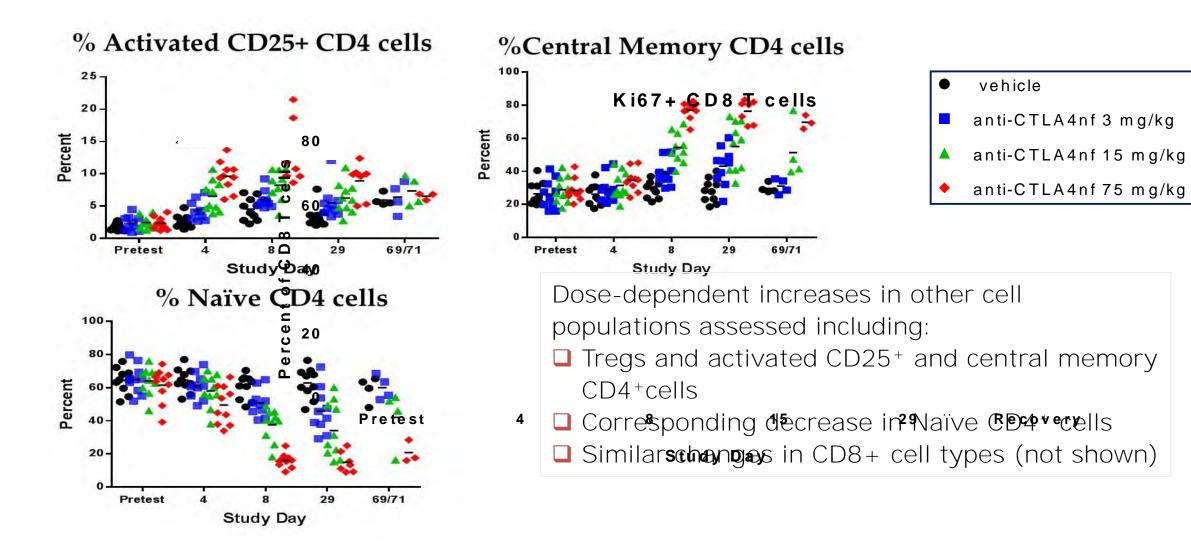

Analyze on Flow Cytometer

Ad5-gag and Ad5-nef Antigen-Specific CD8+ T-cell Phenotyping (Tetramers)


Increases in percentage of gag- or nef-specific CD8+ T cells

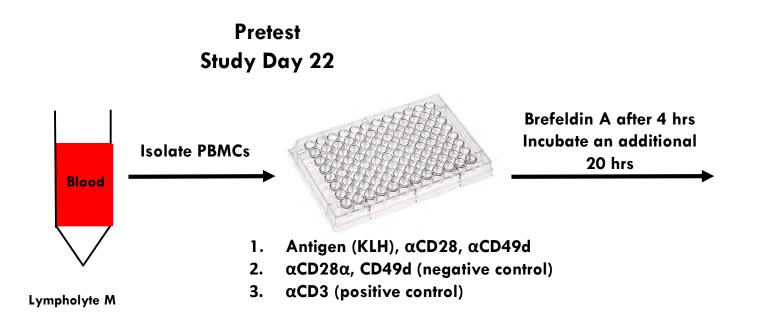
CD4 T-cell Activation/Proliferation

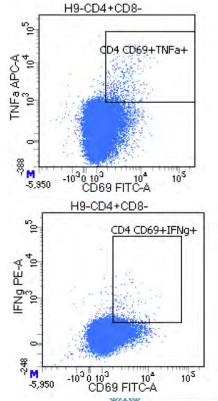

Dose-dependent increases in Ki67⁺ and CD69⁺ helper T cells


CD8 T-cell Activation/Proliferation

Increases in Ki67+ and CD69+ cytotoxic T cells

CD4+ and CD8+ Immunophenotyping

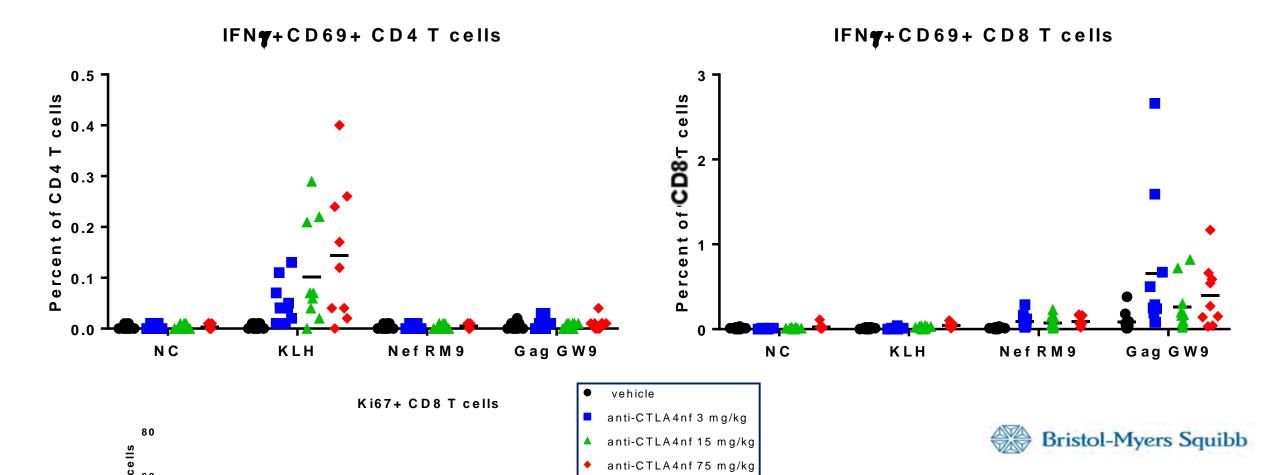



Ex Vivo Recall Responses to KLH or Viral Peptides

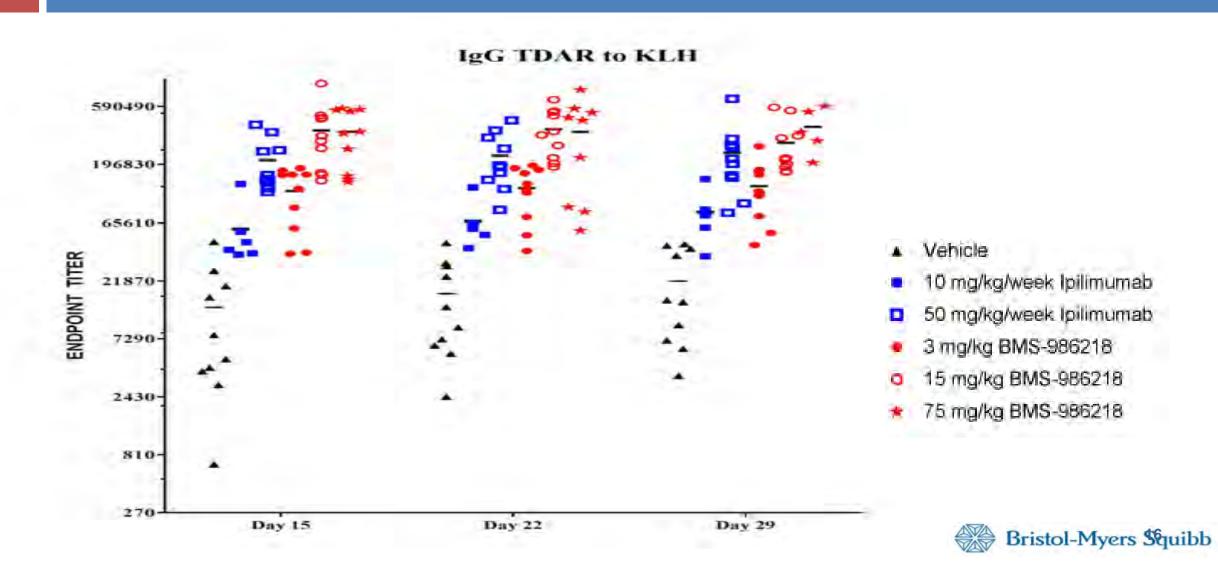
Activation of antigen-specific cells following ex vivo stimulation with neo-antigen, measured by activation marker (CD69) and cytokine (IFN γ and TNF α) expression

- KLH response CD4-mediated
- Gag/Nef responses CD8-mediated

Flow cytometric analysis CD69, IFN γ , TNF α CD4 T cells


-Myers Squibb

Ex Vivo Recall Response to KLH and Gag/Nef


20

Increases in percentages of activated CD4 (KLH) and CD8 (gag/nef) T cells

Comparison of Ipilimumab with CTLA4NF

Summary of CTLA4NF Case Study

- CTLA4NF caused dose-dependent increases in both CD4- and CD8-mediated responses to KLH and gag or nef, respectively, in multiple endpoints
- Toxicity was observed at all doses
 - Moderate to severe clinical observations and dose-dependent increase in incidence and severity of lymphohistiocytic infiltration into numerous tissues
- CTLA4NF enhanced PD and caused adverse findings at lower doses as compared to ipilimumab
- Impact of findings
 - PD endpoints enhanced the understanding of Fc on mechanism
 - FIH dose setting was done based on comparison to ipilimumab, with PD data used as benchmark compared to ipi to gauge differences in potency

Costimulatory Agonist mAb Examples

mAb	Antigen	PD Response	Impact
1	KLH	Increase in TDAR to KLH Increase in ex vivo recall response in CD4+ Increase in Ki67 CD4+ T-cells	Ki67 T-cell proliferation used as PD marker in clinical trial
2	KLH	Decrease in TDAR to KLH No ADAs, consistent with suppressed TDAR Suppressed ex vivo recall response to KLH	Hypothesis: excess mAb abrogates Fc-mediated cross- linking, which is essential for activation and mAb blocks endogenous ligand binding Greater understanding of biology and impact on dose escalation
3	KLH gag/nef Tetanus toxoid	Loss of receptor expression Decrease in TDAR to KLH Reduction in gag and nef-specific CD8 T cells Decrease or no enhancement in proliferating CD4 or CD8 T-cells, resp. No effect on TDAR to Tetanus toxoid (recall)	Greater understanding of sustained receptor internalization and its impact on biologic activity Impacted clinical trial design with regard to dose escalation

Conclusion

- Antigen challenge elicits the immune system allowing for an assessment of immune function
 - CD4- and CD8-mediated
- PD assessments when correlated with exposure, RO/RE, and toxicity data have:
 - furthered our knowledge of biological activity of IO mAb
 - help to define pharmacologic active dose and dose-response relationship to translate to humans to aid in clinical trial design
 - helped to demonstrate relevance of model in absence of toxicity
 - helped to identify clinical biomarkers

Acknowledgements

Immuno- and Molecular Toxicology

Helen Haggerty

Wendy Freebern

Bethany Baumgart

Jacqueline Calvano

Weimin Chen

James Crona

Rashade Haynes II

Jacob Lesniak

Courtni Newsome

Karen Price

Jean Sathish

Daniel Szatkowski

Austin Thekkumthala

Chris Thompson

Preeti Yamdagni

Bojing Wang

BMS- DSE

Michael Graziano

Todd Bunch

Clinical Pathology

Central Pharmacy

Pharmacokinetics

Toxicology

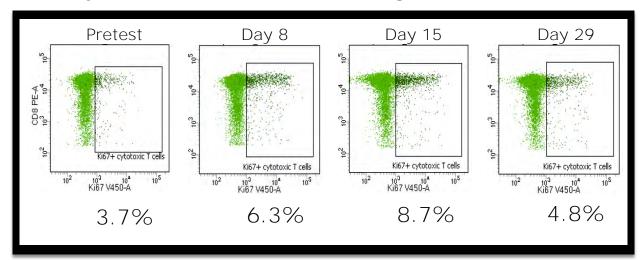
Veterinary Sciences

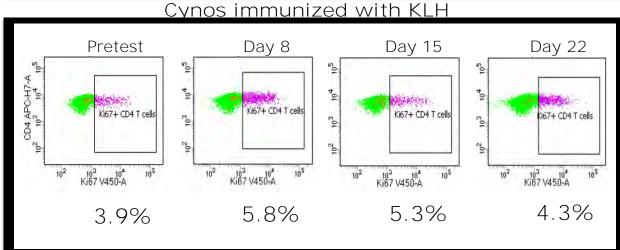
BMS Discovery, PCO, and Translational Medicine

Alan Korman John Loffredo

Charles River Laboratories

Tox Operations Immunology Group





T-cell activation/proliferation


Cynos immunized with Ad5-Gag and Ad5-Nef

- Non-antigen-specificCD4+ or CD8+ T cells
- Nuclear proliferation marker
 - Ki67
- Cell-surface activation markers
 - CD69 and/or CD107a
- Multiple timepoints throughout study to assess kinetics of response
- Flow cytometry

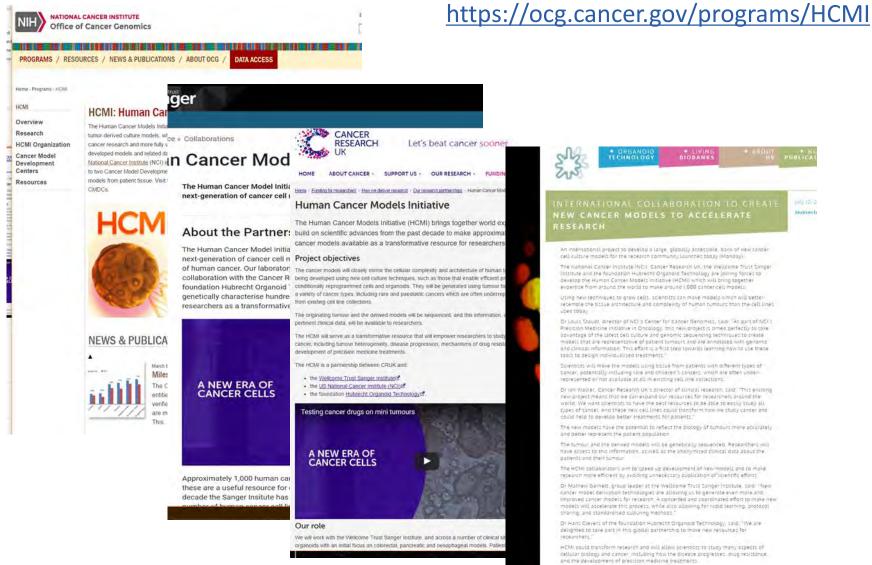
NCI Funding Programs That Support Development of Cancer Models

Mariam Eljanne, PhD
Program Director/Division of Cancer Biology/NCI/NIH

FDA-AACR Non-clinical Models for Safety Assessment of Immuno-oncology Products Workshop September 6, 2018

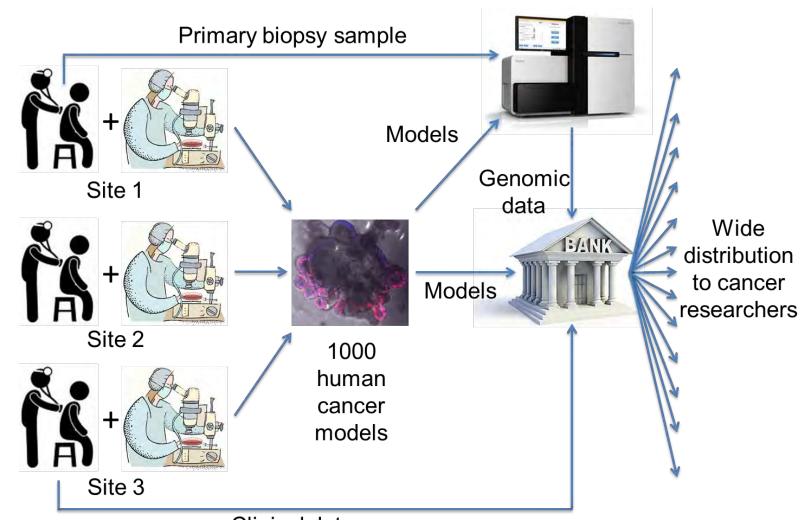
I. Human Cancer Models Initiative (HCMI)

II. Enhancing Applicability of Mammalian Models for Translational Research


Modeling the Diversity of Human Cancer: An Unmet Need

- Molecular characterization of cancer has identified cancer-relevant mutations that range from <1% to >50% in population frequency
- Of the ~ 1,000 cell lines commonly used in research
 - Most cannot be compared to the primary tumor
 - Clinical and outcome data is not available
 - Do not represent, or underrepresent certain molecular subtypes (e.g. TMPRSS2/ERG prostate cancer)
 - Do not represent most pediatric cancer subtypes
 - Do not represent and underrepresent common combinations of lesions
 - Certain rare cancers subtypes are either missing or are underrepresented
 - Do not reflect the ethnic and racial sub-populations
 - Do not recapitulate the relationships of a tumor and its microenvironment (e.g. stroma, immune cells, endothelium, tumor subclones)

Human Cancer Models Initiative (HCMI) Consortium

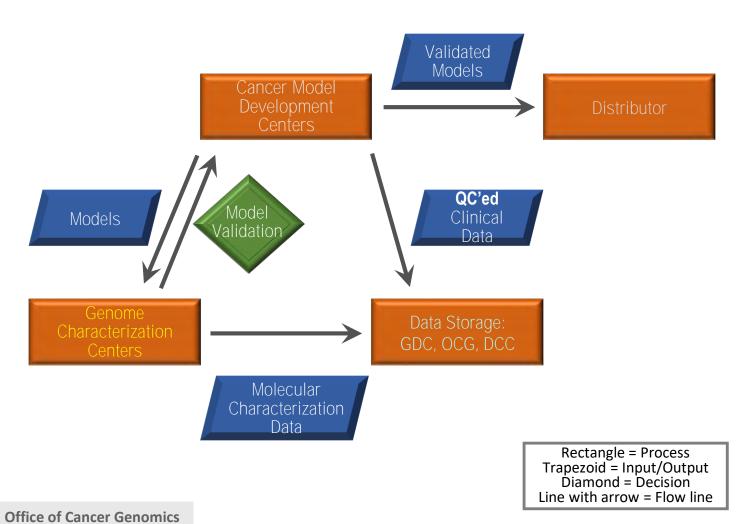


SHARE THIS

HCMI Pilot Design

HCMI Core Principles

- Open distribution "community resource"
- > IP issues identified and addressed for model development and distribution for academia and industry
 - Informed consent language allows
 - Model development
 - Collection of clinical data
 - Molecular characterization
 - De-linking
 - Use by academia, industry, others
 - All information collected available through Genomic Data Commons (GDC), Office of Cancer Genomics (OGC) web site and European Bioinformatics Institute
 - Distribution through ATCC
 - Reasonable Material Deposition requirements
 - Reasonable Material Transfer Agreements
- All protocols, when they are developed, will be shared through the OCG web site https://ocg.cancer.gov/programs/hcmi/resources


HCMI Core Principles

- Molecular characterization [NCI-supported models]
 - 15X WGS of model, tumor and normal DNA
 - 150X WXS of model, tumor and normal DNA
 - RNA-seq of model and tumor RNA
- WSI and HUB will also sequence DNA and RNA, details vary
- Sharing
 - Molecular characterization and clinical data will be available from the GDC or EBI
 - Protocols on the NCI HCMI web site and ATCC
- Steering Committee selected 27 data elements which will be part of the HCMI Searchable Catalog (NCI subcontract, work in progress)

Cancer Models Development Process

- Patients are enrolled and clinical data is collected
- Successfully established models are sequenced
 - Important for model confirmation
 - These models are submitted for distribution
 - Outcome data is collected and the case de-linked from primary clinical files
- Molecular characterization, clinical and other data for confirmed cancer models is deposited into a the GDC

HCMI Pilot: Cancers

- Breast Cancer
- Colorectal Cancer
- Esophageal Cancer
- Gastroesophageal Cancer
- Glioblastoma
- Lung Cancer
- Pancreatic Cancer
- Pediatric tumors
- Rare Cancers
- Upper GI, other
- List of cancers and populations represented is expanding

Research Projects to Enhance Applicability of Mammalian Models for Translational Research

PARs 17-244 and 17-245

Rationale for PARs 17-244 and 17-245

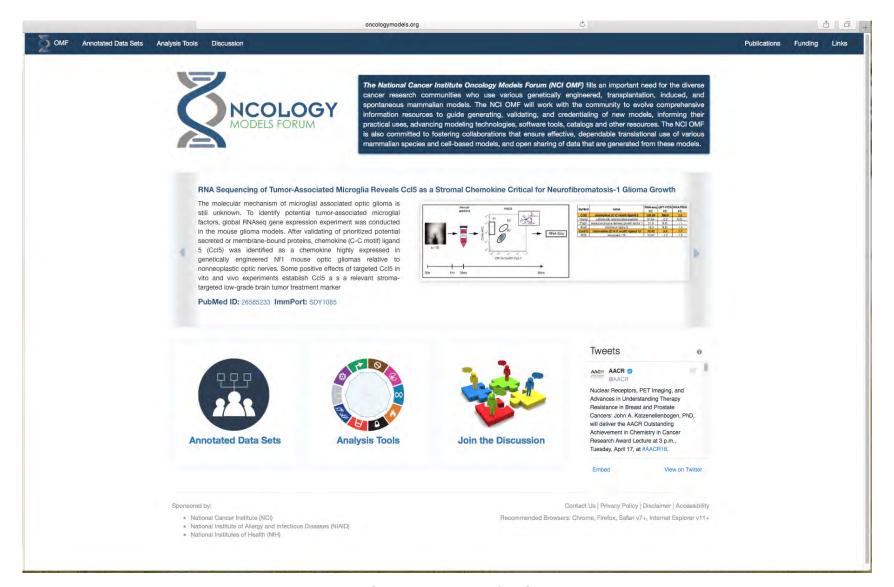
- ➤ Lessons learned from NCI's Mouse Consortium (1999-2014).
 - ❖ Partnerships within and across research communities help to ensure model validity
 - Multiple viewpoints foster development of better models for specific purposes
 - Models to explore basic disease mechanisms may not be sufficiently complex to support some translational research requirements
- Regular influx of new ideas into oncology modeling accelerates development of a broader spectrum of translational models
- Why do we need <u>Oncology Models Forum</u>
- Use the Forum as a locus to nucleate cross-disciplinary groups around specific technical, scientific, or informatics challenges to improve or expand translational use of oncology models;
- Promote effective communications and collaborations among diverse communities of research, especially those who generate or identify models and those who need to use them for patient benefit
- Dissemination of well-validated translational models and their associated data
- Data sharing to improve translational model selection
- * Access to detailed protocols so that model use is robust and reliable

Purpose of PARs 17-244 and 17-245

Invite applications for projects to:

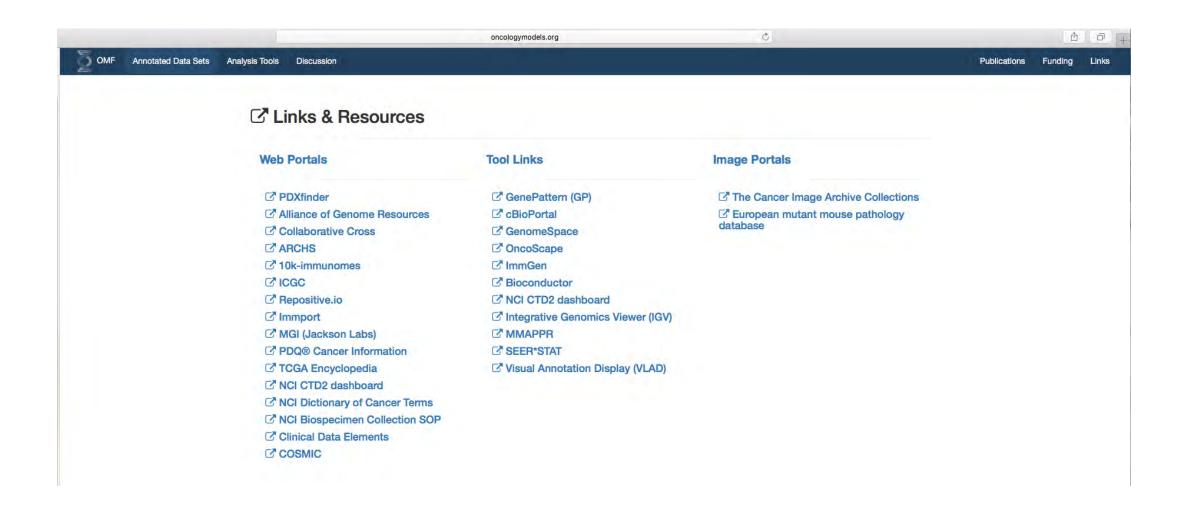
- Expand, improve, or transform the utility of mammalian cancer and tumor models for translational research.
- > Show that translational mammalian models are suitable for use in pre-clinical and co-clinical settings
- > Develop and characterize mammalians with cancer as representative models of human disease.
- > Demonstrate that mammalian models or their derivatives used for translational research are:
 - robust representations of human biology
 - Appropriate to test questions of clinical importance
 - Provide reliable information for patients' benefit
- > Demonstrate how to overcome translational deficiencies of mammalian oncology models
- > Define new uses of mammalian models or their genetics for unexplored translational challenges
- > Advance standard practices for use of translational models
- Test approaches to validate and credential models
- > Challenge current practices for how models are used translationally

- ➤ PAR-17-244: Collaborative R01s Projects
- Up to 5 years
- Up to \$450,000 direct costs per year
- Address the technical and experimental parameters that ensure effective translational use of mammalian models
- Identify and propose the means to tackle unmet translational requirements;
- Extend the range of insights and approaches that address translational oncology modeling needs
- Use the Oncology Models Forum for their collaborations, and be active members of the Forum.
- ➤ PAR-17-245: R01 Projects
- Up to 5 years
- Up to \$450,000 direct costs per year
- Narrower scope than a Collaborative R01 team
- Address one or more of the technical and experimental parameters that ensure effective translational use of mammalian models
- Identify and propose one way to address an unmet translational requirement
- ❖ If possible, take advantage of the Oncology Models Forum to facilitate collaborations, and participate in the Forum


NIH NATIONAL CANCER INSTITUTE

13

Projects that are suitable for this FOA include but are not limited to the examples that follow:


- Develop and test innovative validation and credentialing strategies for different types of in vivo and in vitro translational models
- Cross-compare various closely related human or mammalian models (e.g., PDXs, and derivative organoids, cell lines, or cell line xenografts, etc.) for what each model type contributes to translationally reliable information for design, testing, or outcome evaluation of chemo- or immuno-therapy or radiation
- Utilize experimental population mammalian genetics to functionalize a cancer GWAS or population study
- Define human genetic determinants of response or resistance to immunotherapy, immunoprevention, or chemotherapy, as well as risk of adverse events, late effects, and second malignancies
- > Create novel models to fill one or more of the critical gaps in translational requirements;
- > Derive and test a widely applicable tool strain for oncology modeling or imaging
- Validate and/or credential an existing model or models to enhance the range of translational uses
- > Develop and test novel "humanizing" approaches for mammalian models as recipients of human transplants from tumors, metastatic deposits, or early lesions; and/or
- > Develop new, reliable standard reagents to advance the existing translational uses of mammalian models, enable new uses, and enable comparisons across species.

NIH NATIONAL CANCER INSTITUTE

oncologymodels.org

Nancy Boudreau

Nancy Boudreau

Questions?

U.S. FOOD & DRUG AACH American Association for Cancer Research **ADMINISTRATION**

G CURES TOGETHER

Panel Discussion:

Moderators:

John K. Leighton, PhD, and Julie Schneider, PhD

Panelists:

Alan Korman, PhD Danuta Herzyk, PhD Helen Haggerty, PhD Robert Li, PhD Mariam Eljanne, PhD