Poster Session B
Saturday, March 14
12:30-3:00 p.m.

B01 Connecting DNA repair and cancer cell metabolism: Novel roles for DNA-PC in glycolytic control. Emanuela Dylgjeri, Thomas Jefferson University, Philadelphia, PA

B02, PR09 NAD+ metabolism as a potential therapeutic vulnerability in neuroendocrine prostate cancer. Andrew Goldstein, University of California, Los Angeles, Los Angeles, CA

B03 Lipid metabolism reprogramming occurring in prostate cancer cells influenced by bone osteoblastic progenitors. Sofia Lage-Vickers, INSTITUTO DE QUIMICA BIOLOGICA DE LA FACULTAD DE CIENCIAS EXACTAS Y NATURALES (IQUIBICEN) ; (CONICET - UBA), CABA, Buenos Aires Argentina

B05 Race-related metabolites associated with response to secondary hormonal therapy in metastatic castration-resistant prostate cancer. Sean Piwarski, Duke University, Durham, NC

B06 Androgen Receptor (AR) Antagonism Triggers Energetic Stress And An Early Succinate-Mediated Response That Promotes AR Stability And Reactivation. Neetu Saxena, Vancouver Prostate Centre, Vancouver, British Columbia, Canada

B07 CPT1A expression increases fatty acid oxidation and modulates androgen signaling and prostate cancer growth. Isabel Schlaepfer, University of Colorado Anschutz Medical Campus, Aurora, Colorado

B08 Pyrazolo (Pra)- and pyrrolo (Prr)-pyrimidine compounds inhibit androgen receptor activity via central ATP metabolism. Takuma Uo, University of Washington, Seattle, WA

B09 Preoperative plasma fatty acid metabolites inform risk of prostate cancer progression and can be used for personalized patient stratification. Eugenio Zoni, Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Canton Bern, Switzerland

B10, PR10 E2F1 re-calibration after RB loss drives altered metabolism in castration resistant prostate cancer (CRPC). Amy Mandigo, Sidney Kimmel Cancer Center, Jefferson University, Philadelphia, PA
B11 B7-H3 is a potential therapeutic target in advanced metastatic prostate cancer. Supreet Agarwal, National Cancer Institute, Bethesda, Maryland

B12 LIM Domain 7 (LMO7) splice variant or depletion of LMO7 induce epithelial mesenchymal transition in prostate cancer. Muthana Al Abo, Duke University, Durham, NC

B13 Combination therapies with BH3 mimetic drugs for prostate cancer. Seiji Arai, Gunma University, Maebashi, Gunma, Japan

B14 SM08502, a novel, small-molecule CDC-like kinase (CLK) inhibitor, demonstrates strong antitumor effects and Wnt pathway inhibition in castration-resistant prostate cancer (CRPC) models. Carine Bossard, Samumed, LLC, San Diego, CA

B15 Contribution of ZFHX3 loss to anti-androgen resistance in CRPC. John Bright, National Cancer Institute, Bethesda, MD

B16 Genome-scale CRISPRi screen identifies KIF4A as a novel driver of aggressive prostate cancer. Rajdeep Das, UCSF, San Francisco, CA

B17, PR13 RET kinase as a driver of neuroendocrine prostate cancer. Justin Drake, University of Minnesota, Minneapolis, Minnesota

B18 Transcriptional analysis of TCGA prostate cancer samples identifies an association of poorer survival and aggressive disease biology with CDC-like kinase (CLK) expression and spliceosome regulation. Catherine Fleener, Samumed, LLC, San Diego, CA

B20 PMR-116, a novel RNA polymerase I inhibitor with efficacy in preclinical models of prostate cancer. Luc Furic, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia

B21 Targeting ERG through Toll-like receptor 4 in prostate cancer. Ben Greulich, Indiana University, Bloomington, Indiana

B22 Development of LBD dimerization inhibitors for the AR: from in silico screening to in vitro characterization. Christine Helsen, KU Leuven, Leuven, Belgium

B23 A novel oncogenic isoform of the Ewing sarcoma breakpoint gene is regulated by androgen receptor in prostate tumors. Peter Hollenhorst, Indiana University, Bloomington, IN

B24 The N-terminal domain inhibitor of the androgen receptor, EPI-7386, targets full length and splice variants driven pathways. Nan Hyung Hong, ESSA Pharmaceutical, Inc., Houston, Texas

B25 Identification of prostate-restricted epithelial antigens for transgenic T cell adoptive therapy against prostate cancer. Diana DeLucia, Fred Hutchinson Cancer Research Center, Seattle, WA

B26 TGFβ-family catabolic myokines regulate tumor growth via the tumor microenvironment. Neha Jaiswal Agrawal, Roswell Park Comprehensive Cancer Center, Buffalo, NY

B27 Inhibition of anti-apoptosis proteins by ASTX-660 modulates therapeutic response to radiation in high-risk prostate cancer. Dimitra Kalamida, Centre for Cancer Research and Cell Biology (CCRCB), Queen’s University of Belfast, Belfast, UK
B30 FGFR1 and LAD1 in prostate cancer bone metastasis. Estefania Labanca, Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX

B31 Targeting fibroblast growth factor receptors in castration-resistant prostate cancer. Mark Labrecque, University of Washington, Seattle, WA

B32 Investigating the functional role of the long noncoding RNA SChLAP1-AS in advanced prostate cancer. Haolong Li, University of California at San Francisco, San Francisco, CA US

B33 A novel integrin-targeted therapeutic agent for prostate cancer. Francis Markland, University of Southern California, Los Angeles, CA

B34 Dissecting the roles of the spindle assembly checkpoint serine / threonine kinases BUB1 and BUB1B in castration-resistant prostate cancer. Maria Martinez, Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine. Sylvester Comprehensive Cancer Cente, Miami, Florida

B35 Computer-aided discovery of small-molecule inhibitors targeting neural transcription factor BRN2 in neuroendocrine prostate tumors. Ravi Munuganti, Vancouver Prostate Centre, Vancouver, BC, Canada

B36, PR11 Targeting AR addiction through CDK7/MED1 axis in castration-resistant prostate cancer. Irfan Asangani, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania

B37 Ivermectin inhibits HSP27 and potentiates efficacy of AR targeting strategies in prostate cancer models. Lucia Nappi, Vancouver Prostate Centre, Vancouver, British Columbia, Canada

B38 SEMA3C: A novel therapeutic target for treatment of advanced prostate cancer. Christopher Ong, Vancouver Prostate Centre, UBC, Vancouver, BC, Canada

B39 TBX2 recruits LSD1 and the CoREST complex to drive the pathogenesis of prostate cancer. Alice Ormrod, Queen's University Belfast, Belfast, United Kingdom

B40 Identification of IRAK hub genes as novel targets in inflammation-driven prostate cancer progression via integrative genomics and CRISPR-mediated gene-editing techniques. Saheed Oseni, Florida Atlantic University, Davie, Florida

B41 Selective inhibition of Polo-like kinase (Plk1) with onvansertib sensitizes cancer cells to abiraterone acetate through synergistic disruption of cell cycle progression. Jesse Patterson, Massachusetts Institute of Technology, Cambridge, Massachusetts

B42 Inhibition of Serum Response Factor as an alternative strategy to treat castrate-resistant prostate cancer. Maria Prencipe, UCD School of Biomolecular and Biomedical Science, Conway Institute of of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland

B43 TEAD4 is a novel potential therapeutic target for castration-resistant prostate cancer. Sifeng Qu, Shandong University, Jinan, Shandong Province, China
HER2-mediated mechanisms of resistance to androgen deprivation therapies in advanced castration-resistant prostate cancer (CRPC). Joshua Russo, Beth Israel Deaconess Medical Center, Boston, MA

Identification of weaknesses in prostate cancer proteostasis networks. Arielle Shkedi, University of California San Francisco, San Francisco, California

In vivo and in vitro exploration of the role of TET1 and hydroxymethylation in prostate cancer. Elien Smeets, Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Vlaams-Brabant, Belgium

G3BP1-assisted mRNA partitioning supports selective protein synthesis in response to oxidative stress. Syam Prakash Somasekharan, University of British Columbia, Vancouver, BC, Canada

Chromatin accessibility landscape and transcriptome of castration resistant prostate cancers reveals novel subtypes and diverse master regulators. Fanying Tang, Weill Cornell Medicine, New York, NY

Selective inhibition of transcription factor BRN2 as a treatment strategy for Small-Cell Prostate Cancer. Daksh Thaper, University of British Columbia, Vancouver, BC, Canada

Blocking MCP-1 signaling inhibits prostate tumor growth in mice on high-fat diet. Piwen Wang, Charles R. Drew University of Medicine and Science, Los Angeles, CA

MEIS1 downregulation by MYC mediates prostate cancer development through elevated HOXB13 expression and AR activity. Nichelle Whitlock, National Cancer Institute, NIH, Bethesda, MD

NUAK2 inhibition slows prostate cancer cell proliferation, invasion and sensitizes cells to palmitic acid induced lipotoxicity. Megan Zhao, Duke University, Durham, NC

Towards a consensus definition of aggressive prostate cancer for etiologic epidemiologic research. Lauren Hurwitz, National Cancer Institute, Rockville, Maryland

E2F3 modulates prostate cancer progression in the setting of RB loss. Talya Laufer, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA

Morphine drives tumor growth: not through mu opioid receptors, but through MRGs. Sanghee Lee, University of California San Diego, La Jolla, CA

The molecular profiling heterogeneity within African American and Caucasian American prostate cancer patients indicating different disease outcomes. Shashwat Sharad, Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD

Proprietary Cabazitaxel Human Serum Albumin nano-formulation (SN-100) for metastatic Castration Resistant Prostate Cancer (mCRPC). Jun Li, Shennong Therapeutics, Inc, Durham, NC

Resistance to PSMA-targeted radioligand therapy: the impact of heterogeneous PSMA expression. Lueckerath Lueckerath, UCLA, Los Angeles, CA
B59 Safety and immunologic activity of combination immunotherapy (vaccines with PDL1/TGF-beta inhibition) in castration resistant prostate cancer (CRPC). Ravi Madan, National Cancer Institute, Bethesda, MD

B60 Abrogating hypoxia-induced Enzalutamide resistance through targeting of IL8/VEGF-A signaling in pre-clinical models of castrate-resistant prostate cancer. Pamela Maxwell, Queens University Belfast, Belfast, Northern Ireland

B61 Improving genomic data accessibility: Implementation of a genomic data research portal. Christopher McNair, Thomas Jefferson University, Philadelphia, PA

B62 Cabozantinib can block tumor growth by disrupting tumor vasculature in neuroendocrine patient-derived prostate cancer xenografts. Colm Morrissey, University of Washington, Seattle, WA

B63 NF-1 and TTN genes expression level in prostate cancer. Muhammad Naeem Faisal, Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Faisalabad, Punjab, Pakistan

B64 A Rag2/Il2rg double-knockout rat (SRG™ OncoRat®) supports human prostate cancer xenografts with the ability for serial tissue sampling for in-life pharmacodynamic biomarker analysis. Fallon Noto, Hera Biolabs, Lexington, KY

B65 Generation and characterization of patient-derived prostate cancer organoids. Raphaëlle Servant, University Hospital Basel, Basel, Switzerland

B66 Transcription level validation of risk stratification panels in grade group 2&3 prostate cancer. Carolin Stürenberg, University of Helsinki, Helsinki, Finland

B67 Significance of distinct specifically enriched missense TP53 mutations in prostate cancer. Irina Vasilevskaya, SKCC at Jefferson University, Philadelphia, PA

B68 Genetically predicted plasma N-glycans and prostate cancer risk: Analysis of 79,194 cases and 61,112 controls of European ancestry. Lang Wu, University of Hawaii at Manoa, Honolulu, HI

B69 Establishing and characterizing various in vivo CRPC bone metastasis models. JuanJuan Yin, NCI, Bethesda, MD

B70, PR15 Therapeutic potential of targeting macrophages in castration resistance prostate cancer. Asmaa Elkenawi, H. Lee Moffitt Cancer Center, Tampa, FL

B72 Tumour immune microenvironment effects of hypo-fractionated radiotherapy +/- immune checkpoint blockade in pre-clinical prostate cancer models. Richard Bryant, University of Oxford, Oxford, United Kingdom

B73 Immune microenvironment in prostate cancer and relationship with clinical characteristics. Sophia Halliday, Trinity College Dublin, Dublin, Co. Dublin, Ireland

B75 Integrating multi-compartment analysis of the prostate tumor microenvironment into the clinic. Brian Johnson, UW-Madison, Madison, WI

B76 Poly-aneuploid cancer cells: Actuators of therapeutic resistance in prostate cancer. Laurie Kostecka, Johns Hopkins University, Baltimore, Maryland

B77 The methylome of the cancer associated fibroblasts signals the presence and severity of prostate cancer. Mitchell Lawrence, Monash University, Melbourne, Victoria, Australia

B78 A halflife extended PSMAxCD137/4-1BB bispecific Humabody therapeutic for immunotherapy of prostate cancer and other PSMA positive tumours. James Legg, Crescendo Biologics, Cambridge, UK

B79 The role of cancer-associated fibroblasts and their extracellular vesicles in prostate cancer progression. Johannes Linxweiler, Saarland University, Department of Urology, Homburg Saar, Germany

B80 Targeting MerTK-mediated efferocytosis in prostate cancer. Kayla Myers, Johns Hopkins University School of Medicine, Baltimore, MD

B81 Enzalutamide-induced PTH1R-mediated TGFB2 decrease in osteoblasts contributes to resistance in prostate cancer bone metastases. Ruihua Liu, Van Andel Institute, Grand Rapids, Michigan

B82 Reciprocal signaling within prostate tumor microenvironment mediates castrate resistant disease progression. Manisha Tripathi, Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas

B83 CHD1 Remodels Immunosuppressive Tumor Microenvironment in PTEN-Deficient Prostate Cancer. Y. Alan Wang, UT MD Anderson Cancer Center, Houston, TX

B84 Effect of canine prostate cancer on bone resorption and formation in vitro using mouse calvaria. Shiyu Yuan, Department of biological sciences, Molecular and cellular biology program, College of arts and sciences, Ohio university, Athens, OH

B85 Mannose Receptor–positive Macrophage Infiltration Correlates with Prostate Cancer onset and Metastatic Castration-resistant Disease. Jelani Zarif, Johns Hopkins University School of Medicine, Baltimore, MD

B86 A cytokine signaling switch in response to androgen deprivation therapy promotes immune-suppression and prostate cancer recurrence. Renyuan Zhang, Roswell Park Comprehensive Cancer Center, Buffalo, NY

B87 Tumor Microenvironment Derived NRG1 promotes antiandrogen resistance in prostate cancer. Zeda Zhang, Memorial Sloan Kettering Cancer Center, New York, NY

B88, PR16 Loss of myeloid BMPR1a alters differentiation and reduces mouse prostate cancer growth. Claire Ihle, University of Colorado Anschutz, Aurora, Colorado