FDA-AACR-IASLC Workshop to Address the Criticality of Tobacco Use Assessment in Oncology Therapeutic Trials

February 28, 2020 | Silver Spring, MD

@FDAOncology @AACR @IASLC

Join the conversation with #OCEToBaccoUse
Workshop Cochairs:

Michael E. Menefee, MD
Roy S. Herbst, MD, PhD
Matthew Steliga, MD
SESSION I:
Assessment Of Tobacco In Oncologic Therapeutic Trials: Introduction And Rationale

Session Moderators: Carolyn M. Dresler, MD, MPA, and Michael E. Menefee, MD

Speakers:
Carolyn M. Dresler, MD, MPA
Paul A. Bunn, Jr. MD, FASCO
Graham Warren, MD, PhD
Stephanie Land, PhD
Addressing the Criticality of Tobacco Use Assessment In Oncology Therapeutic Trials

Overview

Carolyn Dresler, MD, MPA
Effects of smoking on the pharmacokinetics of erlotinib

Effects of smoking on the pharmacokinetics of erlotinib

Hamilton, et al. (from OSI Pharma)
Clin Cancer Res, 2006; 12(7pt1):2166-71

“In conclusion, this study supports that the decrease in erlotinib exposure observed
7. Drug Interactions:

Cigarette smoking has been shown to reduce erlotinib AUC. Patients should be advised to stop smoking or use nonsmoking conditions to reduce drug exposure.

12.3 Metabolism:

“However, the exact dose to be recommended for patients who currently smoke is unknown.”

17. Patient Counseling Information:

Smokers should be advised to stop smoking while taking TARCEVA as plasma concentrations of erlotinib are reduced due to the effect of smoking.

https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021743s14s16lbl.pdf
Mean dose-normalized plasma concentration–time curves (± 95% CI) of irinotecan and SN-38 in smokers and nonsmokers (N = 190).

van der Bol J M et al. JCO 2007;25:2719-2726
Awareness among patients with cancer of the harms of continued smoking

Responses from patients who were currently smoking at time of diagnosis

<table>
<thead>
<tr>
<th>Question on Harms of Continued Smoking</th>
<th>Agree</th>
<th>Don’t Know</th>
<th>Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking Increases Surgical Complications</td>
<td>29%</td>
<td>51%</td>
<td>20%</td>
</tr>
<tr>
<td>Smoking Increases Radiation Side Effects</td>
<td>20%</td>
<td>60%</td>
<td>19%</td>
</tr>
<tr>
<td>Smoking Reduces Quality of Life After Chemotherapy</td>
<td>28%</td>
<td>48%</td>
<td>24%</td>
</tr>
<tr>
<td>Smoking Reduces Efficacy of Chemotherapy/Radiation</td>
<td>26%</td>
<td>54%</td>
<td>20%</td>
</tr>
<tr>
<td>Smoking Increases Risk of Death</td>
<td>40%</td>
<td>35%</td>
<td>25%</td>
</tr>
<tr>
<td>Smoking Increases Risk of Second Primary Cancers</td>
<td>42%</td>
<td>31%</td>
<td>17%</td>
</tr>
</tbody>
</table>
Thank you!
Tobacco/Nicotene Biology and Lung Cancer

Paul A. Bunn, Jr, MD, Distinguished Professor and Dudley Endowed Chair, Univ. of Colorado Cancer Center, Aurora, CO, USA

Consultant: Amgen, AstraZeneca, Bayer, BMS, Celgene, Daiichi- Sankyo, Eli Lilly, Ipsen, Merck, Roche, C-Stone, Ascentage
Tobacco/Nicotene Biology and Lung Cancer

1. Does tobacco smoking cause lung and other cancers?
2. Does tobacco cessation reduce cancer risk?
3. Does tobacco smoke increase mutations and mutation burden and produce unique mutations?
4. Do these tobacco induced mutations affect outcome from therapy?
5. Does nicotine itself cause mutations and cancer and can e-cigarettes and vaping cause cancer or affect cancer treatment outcomes?
6. Does smoking cessation after diagnosis affect outcome? From surgical resection?; From Radiation?; From Chemotherapy?; From immunotherapy?
1). Does tobacco smoking cause lung and other cancers? yes
2). Does tobacco cessation reduce cancer risk? yes
Causes of Death from tobacco smoke

Figure 1.1 The health consequences causally linked to smoking and exposure to secondhand smoke

Global New cases and # of deaths from Lung Cancer 2015 and 2017

<table>
<thead>
<tr>
<th>Cancer Site</th>
<th># New cases (% of all)</th>
<th># Deaths (% of all)</th>
<th># China new Cases (%)</th>
<th># China deaths (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>2,093,876 (11.6)</td>
<td>1,761,007 (18.4)</td>
<td>733,300 (17.1)</td>
<td>610,200 (21.7%)</td>
</tr>
<tr>
<td>total</td>
<td>18,078,957 (100)</td>
<td>9,555,027 (100)</td>
<td>4,292,000</td>
<td>2,814,000</td>
</tr>
</tbody>
</table>

Bray F, et al Global Cancer Statistics 2018
U.S. Cancer statistics and smoking trends, 2020

New Cases	Rank	(%)	Deaths	Rank	(%)
Total | 228,800 | 3 | (13%) | 135,700 | 1 | (23.5%)
Male | 116,300 | 2 | (13%) | 72,500 | 1 | (23%)
Female | 112,520 | 2 | (12%) | 63,220 | 1 | (22%)

5-year survival = 19% (5% in 1964)
1. Does tobacco smoking cause lung and other cancers? YES
2. Does tobacco cessation reduce cancer risk? YES
3. Does tobacco smoke increase mutations and mutation burden and produce unique mutations? Are stem cells affected? Are cells in the microenvironment affected?
Tobacco Smoke Exposure/Carcinogenesis

Carcinogens, Oxidative stress, Inflammation

Carcinogen activation → DNA adduct formation → Mutations, Epigenetic gene inactivation → Growth factor autonomy, angiogenesis, tissue invasion

Normal → Metaplasia → Dysplasia → CIS

Invasive Cancer

Smoking Cessation/Chemoprevention

Carcinogen inactivation ← DNA repair ← Gene demethylation, histone deacetylase inhibition ← Growth factor antagonists, anti-angiogenic, pro-differentiation, anti-proliferative agents
It has been established conclusively that DNA adducts derived from cigarette-smoke carcinogens cause miscoding — most frequently G–T and G–A mutations63,64,65. If these permanent mutations occur in crucial regions of oncogenes such as \textit{RAS} and \textit{MYC}, or in tumour-suppressor genes such as \textit{TP53} and \textit{CDKN2A} (which encodes p16), the result can be loss of normal cellular growth-control mechanisms and development of cancer.
Smoke carcinogens cause cancer in mice

Fig. 3. Relationship between dose of

4-(methylnitrosamino)-1-(3-pyridyl)-1-butanolone and lung tumor incidence

in ...
Tobacco induced lung cancers have specific mutations and mutational signatures and higher TMB

But do these mutations and signatures also affect the Tumor microenvironment and response to therapy?
KRAS mutation type as a function of smoking history

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Nucleotide</th>
<th>Former/current</th>
<th>Never</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>G12A</td>
<td>GGT→GCT</td>
<td>13</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>G12C</td>
<td>GGT→TGT</td>
<td>38</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>G12V</td>
<td>GGT→GTT</td>
<td>20</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>G13C</td>
<td>GGC→TGC</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>G13D</td>
<td>GGC→GAC</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>G12D</td>
<td>GGT→GAT</td>
<td>15</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>G12S</td>
<td>GGT→AGT</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Total

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency of KRAS mutations (%)

- Never Smokers (n=81): 15%
- Former Smokers (n=316): 22%
- Current Smokers (n=85): 25%

p = 0.12

Riely G et al Frequency and Distinctive Spectrum of KRAS Mutations in Never Smokers with Lung Adenocarcinoma *Clin Cancer Res.* 2008 Sep 15; 14(18): 5731–5734. doi: [10.1158/1078-0432.CCR-08-0646](https://doi.org/10.1158/1078-0432.CCR-08-0646) PMCID: PMC2754127 NIHMSID: NIHMS141466 PMID: [18794081](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754127/)
Tobacco/Nicotene Biology and Lung Cancer

1. Does nicotine itself cause mutations and cancer and can e-cigarettes and vaping cause cancer or affect cancer treatment outcomes?

<table>
<thead>
<tr>
<th>Unburned tobacco</th>
<th>Carcinogens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical class</td>
<td>Number of compounds</td>
</tr>
<tr>
<td>PAH</td>
<td>1</td>
</tr>
<tr>
<td>Nitrosamines</td>
<td>6</td>
</tr>
<tr>
<td>Aldehydes</td>
<td>2</td>
</tr>
<tr>
<td>Inorganic</td>
<td>7</td>
</tr>
<tr>
<td>compounds</td>
<td>Total 16</td>
</tr>
</tbody>
</table>

![Image of lung cell experiment showing colony formation](image)
E-cigarette smoke (ECS) delivers nicotine through aerosols without burning tobacco. ECS is promoted as noncarcinogenic. We found that ECS induces DNA damage in mouse lung, bladder, and heart and reduces DNA-repair functions and proteins in lung. Nicotine and its nitrosation product 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone can cause the same effects as ECS and enhance mutations and tumorigenic cell transformation in cultured human lung and bladder cells. These results indicate that nicotine nitrosation occurs in the lung, bladder, and heart, and that its products are further metabolized into DNA damaging agents. We propose that ECS, through damaging DNA and inhibiting DNA repair, might contribute to human lung and bladder cancer as well as to heart disease, although further studies are required to substantiate this proposal.

Tang et al PNAS 2019
1. Does smoking influence screening and prevention strategies?
Histology of Bronchial Squamous Epithelium

- **Normal** (Grade 1)
- **Squamous Metaplasia** (Grade 3)
- **Mild Dysplasia** (Grade 4)
- **Moderate Dysplasia** (Grade 5)
- **Severe Dysplasia** (Grade 6)
- **Carcinoma in situ** (Grade 7)
Organoid models from bronchial biopsies

3-D organoid grown from a bronchial biopsy specimens: IF staining with airway basal epithelial cell markers keratin 5 (K5, red, middle, and p63 (red) (right).

Organoid cultures from dysplastic bronchial biopsies treated with vehicle show only undifferentiated cells while cultures treated with iloprost show induction of differentiation.
Evolution of Lung adenocarcinoma

A

B

p-value = 0.0003959 (Kruskall–Wallis test)

p-value = 0.01143 (Kruskall–Wallis test)
PD1 blockade decreases incidence of oral and lung cancers.

Murine model of carcinogen-induced cancers (4-NQO)

Treatment with PD1 blockade significantly decreases incidence of oral cancer compared to IgG control in 4-Nitroquinoline-1-oxide mouse model. (Adapted from Wang et al, 2017). Treatment with PD1 blockade decreases incidence of lung adenocarcinoma in KRAS mutant genetically engineered murine model.. Heymach Lab, unpublished data.

Should smoking status and tobacco cessation be included in study?

William et al, JAMA Oncol, 2016;
Chemo and immunoprevention studies

- Prevention trials of high dose vitamins uniformly failed.
- Prevention trials in subjects with squamous dysplasia at high risk for squamous cancers using nivolumab (NCT03347838) and pulmonary nodules at high risk for adenocarcinomas using pembrolizumab (NCT03634241) are ongoing.
- The effects of smoking cessation on these trials will be critical.
- If positive, the effects of checkpoint inhibitors for tertiary prevention should be undertaken.
Tertiary Prevention: Stage I Lung Cancer: Recurrence vs Second Primary Tumor (SPT) ** in Lung or Elsewhere

** SPT = Cancer arising in different lobe or lung, different histology, or > 5 years later, or different site such as Kidney
<table>
<thead>
<tr>
<th>Years</th>
<th>Second nonlung cancer</th>
<th>Second lung cancer</th>
<th>Any cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

What are the effects of cessation vs continued smoking on these outcomes? Collection of smoking status over time should be part of any trial.
Tobacco/Nicotene Biology and Lung Cancer

1. Does smoking cessation after diagnosis affect outcome? From surgical resection?; From Radiation? From Chemotherapy? From immunotherapy?
Effects of continued smoking on survival after lung cancer diagnosis: early stage

Longitudinal study to assess impact of smoking at diagnosis and quitting on 1-year survival for people with non-small cell lung cancer

Author links open overlay panel Rachel E. Gemine, Robin Ghosal, Gareth Collier, Diane Parry, Ian Campbell, Gareth Davies, Kathryn Davies, Keir E. Lewis on behalf of the LungCast Investigators

Smoking cessation and survival in lung, upper aero-digestive tract and bladder cancer: cohort study.

Tammemagi CM, Neslund-Dudas C, Simoff M, Kvale P
Nicotine decreases Effectiveness of doxorubicin
Does continued smoking affect immunotherapy response?

Effects of cigarette smoke on immune response: chronic exposure to cigarette smoke impairs antigen-mediated signaling in T cells and depletes IP3-sensitive Ca(2+) stores.

Association of tumor mutational burden with smoking and mutation status in non-small cell lung cancer (NSCLC).

Andrew A. Davis

Keynote 024: Pembrolizumab vs CT
An Alternative to Collecting Serial Smoking data: Insure Cessation in all patients
KRAS mutation frequency and type by smoking status

Increasing E-cigarette US in Students

Growth in E-Cigarette Use

- High School Students
- All Students
- Middle School Students

Percentage of youth who use e-cigarettes

Source: National Youth Tobacco Survey 2011–2018

Notes: In 2014, changes were made to the e-cigarette measure to enhance its accuracy.
Smoking affects TMB which may affect therapeutic outcomes from targeted and immunotherapies.

Current smokers without driver mutations have the highest mutation burden in the Japanese cohort. The mutation burden was determined in the patients who were current smokers, former smokers, and never smokers in a group of patients with no driver mutations (left), and patients with driver mutations. Significance was determined by the Kruskal–Wallis test and a one-way ANOVA, **, $P < 0.01$.

Association of tumor mutational burden with smoking and mutation status in non-small cell lung cancer (NSCLC).

Andrew A. Davis
Major Conclusions of the Report

1. Smoking cessation is beneficial at any age. Smoking cessation improves health status and enhances quality of life.

2. Smoking cessation reduces the risk of premature death and can add as much as a decade to life expectancy.

3. Smoking places a substantial financial burden on smokers, healthcare systems, and society. Smoking cessation reduces this burden, including smoking-attributable healthcare expenditures.

4. Smoking cessation reduces risk for many adverse health effects, including reproductive health outcomes, cardiovascular diseases, chronic obstructive pulmonary disease, and cancer. Quitting smoking is also beneficial to those who have been diagnosed with heart disease and chronic obstructive pulmonary disease.

5. More than three out of five U.S. adults who have ever smoked cigarettes have quit. Although a majority of cigarette smokers make a quit attempt each year, less than one-third use cessation medications approved by the U.S. Food and Drug Administration or behavioral counseling to support quit attempts.

6. Considerable disparities exist in the prevalence of smoking across the U.S. population, with higher prevalence in some subgroups. Similarly, the prevalence of key indicators of smoking cessation—quit attempts, receiving advice to quit from a health professional, and using cessation therapies—also varies across the population, with lower prevalence in some subgroups.

7. Smoking cessation medications approved by the U.S. Food and Drug Administration and behavioral counseling are cost-effective cessation strategies. Cessation medications approved by the U.S. Food and Drug Administration and behavioral counseling are cost-effective cessation strategies.

Quitting Smoking Saves Lives

Tobacco smoke contains a deadly mix of more than 7,000 chemicals; hundreds are harmful, and about 70 cause cancer. Extensive research has proven that smoking harms nearly every organ of the body, causes many diseases, and reduces health overall.

The 1990 Surgeon General’s report was the first report to review the scientific evidence on the health benefits of quitting smoking. The report was clear—quitting smoking has major and immediate health benefits for men and women of all ages.

The current report expands on the findings of the 1990 report, reaching several important conclusions about the health benefits of quitting smoking, including:

- Quitting smoking reduces the risk of premature death.
- Improves health and enhances quality of life. Quitting can add as much as 10 years to life expectancy.
- Quitting smoking lowers the risk for many adverse health effects, including poor reproductive health outcomes, cardiovascular diseases, COPD, and 12 types of cancer.

Quitting smoking is also beneficial for people who have already been diagnosed with coronary heart disease or COPD.

Quitting smoking reduces the costs of smoking for people who smoke, healthcare systems, and society.

While quitting earlier in life yields greater health benefits, quitting smoking is beneficial to health at any age. Even people who have smoked for many years or have smoked heavily will benefit from quitting.

QUITTING SMOKING LOWERS THE RISK

for many adverse health effects, including reproductive health outcomes, cardiovascular diseases, COPD, and 12 types of cancer.
Effect of Smoking Status on Immunotherapy

In 024 former smokers had larger benefit from I/O than current or former smokers raising the question of whether cessation would help current smokers.

In chemo + I/O trials no data on effects of cessation in current smokers.
Addressing Tobacco Use by Cancer Patients: Clinical and Biologic Considerations

Graham Warren M.D., Ph.D.
Vice Chairman for Research
Department of Radiation Oncology
Department of Cell and Molecular Pharmacology
Cancer Prevention and Control Program
Hollings Cancer Center
Medical University of South Carolina
Disclosures

• Support from AHRQ, and NCI/NIH
• Member or Chair, ASCO, AACR, IASLC, SRNT Tobacco or Comorbidity Subcommittees
• Associate Editor/Editorial Board,
 • *Journal of Thoracic Oncology*
 • *Cancer Epidemiology Biomarkers & Prevention*
 • *Translational Lung Cancer Research*
• Advisor, Canadian Partnership Against Cancer (CPAC)
• No financial or educational disclosures, patents, royalties, payments, or tobacco industry support
• Views are mine and do not represent those of any parent or supporting organizations
Cigarette Smoke

• Largest single contributor to cancer risk
 • Shifting views on largest contribution to preventable health risks as compared with obesity

• Over 7000 constituents in cigarette smoke
 • 60+ known carcinogens
 • Aldehydes
 • Benzene
 • Metals (cadmium, nickel, polonium)
 • Nicotine
 • Nitrosamines
 • Polyaromatic hydrocarbons

• Large number of additives
 • Enhance absorption
 • Increase flavor
 • Increase addiction
Lung Cancer Death Rates

Age-adjusted death rates by HSA, 1988-92

Lung cancer
White male

ICD-9 Category 182

Rate per 100,000 population

Comparison mortality rate (U.S. to U.S.)

77.2 - 119.3 1.26 - 1.38
70.8 - 77.1 1.26 - 1.38
61.5 - 70.7 1.10 - 1.26
54.0 - 61.4 0.95 - 1.10
46.1 - 53.9 0.82 - 0.96
40.0 - 46.0 0.71 - 0.82
9.4 - 39.9 0.17 - 0.71

Hatching indicates sparse data

Source: CDC/NIOSH
Problem: We don’t view Smoking in the Continuum of Cancer

The Established Carcinogenesis Model

- Receptor binding
- Protein kinase A and B activation and other changes
- Uptake of carcinogens
- Metabolic activation
- Metabolic detoxification
- Uptake of cocarcinogens and tumor promoters
- Gene promoter hypermethylation
- DNA adducts
- Persistence of DNA damage
- Repair
- Normal DNA
- Apoptosis
- Mutations in oncogenes and tumor-suppressor genes
- Loss of normal growth control mechanisms
- Cancer

2010 Surgeon General’s Report, Fig 5.1
Problem: We don’t view Smoking in the Continuum of Cancer

The Established Carcinogenesis Model

2010 Surgeon General’s Report, Fig 5.1

The Historical Disconnect

The Reality of Cancer

Biologic Outcomes
(tumor promotion, decreased cancer treatment efficacy)

Clinical Outcomes
(recurrence, toxicity, mortality)

Value Outcomes
(cost of cancer treatment, productivity, QOL/EOL, recurrence, toxicity, mortality)
Problem: We don’t view Smoking in the Continuum of Cancer

The Established Carcinogenesis Model

2010 Surgeon General’s Report, Fig 5.1

The Historical Disconnect

The Reality of Cancer

Biologic Outcomes (tumor promotion, decreased cancer treatment efficacy)

Clinical Outcomes (recurrence, toxicity, mortality)

Value Outcomes (cost of cancer treatment, productivity, QOL/EOL, recurrence, toxicity, mortality)

Addressing Tobacco Use by Cancer Patients
The 2014 Surgeon General’s Report

• Statistics:
 • Evidence for studies between 1990-2012
 • Studies with 100+ patients
 • ~400 studies reporting on over 500,000 patients
• Effects of smoking on:
 1. Overall mortality/survival
 2. Cancer-specific mortality/survival
 3. Risk of second primary cancers
 4. Cancer recurrence/response to treatment
 5. Toxicity

The 2014 Surgeon General’s Report

• Conclusions:

 • In cancer patients and survivors, the evidence is sufficient to infer a *causal relationship* between cigarette smoking and *adverse health outcomes*. Quitting smoking improves the prognosis of cancer patients.

 • In cancer patients and survivors, the evidence is sufficient to infer a *causal relationship* between cigarette smoking and *increased all-cause mortality and cancer-specific mortality*.
The 2014 Surgeon General’s Report

• Conclusions:
 • In cancer patients and survivors, the evidence is sufficient to infer a *causal relationship* between cigarette smoking and *increased risk for second primary cancers* known to be caused by cigarette smoking, such as lung cancer.
 • In cancer patients and survivors, the evidence is suggestive but not sufficient to infer a causal relationship between cigarette smoking and the risk of recurrence, poorer response to treatment, and increased treatment-related toxicity.

The 2014 SGR: Outcome Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Studies</th>
<th>Associations (Significant)</th>
<th>RR Magnitude (median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Mortality</td>
<td>159</td>
<td>87% (62%)</td>
<td>Current: 1.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Former: 1.22</td>
</tr>
<tr>
<td>Overall Survival</td>
<td>62</td>
<td>77% (42%)</td>
<td></td>
</tr>
<tr>
<td>Cancer Related Mortality</td>
<td>58</td>
<td>79% (59%)</td>
<td>Current: 1.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Former: 1.03</td>
</tr>
<tr>
<td>Second Primary</td>
<td>26</td>
<td>100% (100%)</td>
<td></td>
</tr>
<tr>
<td>Recurrence</td>
<td>51</td>
<td>82% (53%)</td>
<td>Current: 1.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Former: 1.15</td>
</tr>
<tr>
<td>Response</td>
<td>16</td>
<td>72%</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>82</td>
<td>94% (80%)</td>
<td></td>
</tr>
</tbody>
</table>

Negative Associations of Smoking
(one or more negative association)

The 2020 Surgeon General’s Report

• Statistics:
 • 10 studies with ~11,000 patients, 2000-16
 • Evaluating effects of smoking cessation AFTER a cancer diagnosis on overall mortality
 • Smoking cessation associated with improved survival
 • The evidence is suggestive but not sufficient to infer a causal relationship between smoking cessation and improved all-cause mortality in cancer patients who are current smokers at the time of a cancer diagnosis.

3 studies compared vs. never smoking

In 7 studies comparing quitting vs. continued smoking
 - 6 showed significant reductions in mortality with quitting
 - Median 45% reduction in mortality

Smoking and Prostate Cancer

<table>
<thead>
<tr>
<th>Cause of Death</th>
<th>% of Total Deaths</th>
<th>HR for Current Smokers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiopulmonary disease</td>
<td>50.3%</td>
<td>3.05</td>
</tr>
<tr>
<td>Other</td>
<td>15.5%</td>
<td>5.52</td>
</tr>
<tr>
<td>Gastrointestinal cancer</td>
<td>12.4%</td>
<td>4.09</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>9.9%</td>
<td></td>
</tr>
<tr>
<td>Other cancers</td>
<td>3.1%</td>
<td></td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>8.7%</td>
<td></td>
</tr>
</tbody>
</table>

Treatment (surgery, radiotherapy, androgen deprivation and duration) all focus on optimizing a relatively low percentage of deaths. What about the larger percentage?

Current Smoking and Other Cancers

(35,000 pts from NHIS)

<table>
<thead>
<tr>
<th>Cancer sites</th>
<th>Deaths/Person years</th>
<th>HR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cancer sites</td>
<td>1887/6237</td>
<td>1.85 (1.72, 1.99)</td>
<td><0.001</td>
</tr>
<tr>
<td>Bladder</td>
<td>85/181</td>
<td>1.42 (1.02, 1.97)</td>
<td>0.04</td>
</tr>
<tr>
<td>Breast</td>
<td>271/807</td>
<td>1.81 (1.56, 2.10)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cervix</td>
<td>136/1170</td>
<td>2.38 (1.70, 3.33)</td>
<td><0.001</td>
</tr>
<tr>
<td>Colon</td>
<td>138/335</td>
<td>1.41 (1.09, 1.82)</td>
<td>0.009</td>
</tr>
<tr>
<td>Lung</td>
<td>169/248</td>
<td>1.56 (1.15, 2.12)</td>
<td>0.005</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>67/176</td>
<td>1.74 (1.20, 2.51)</td>
<td>0.003</td>
</tr>
<tr>
<td>Melanoma</td>
<td>88/349</td>
<td>2.01 (1.41, 2.84)</td>
<td><0.001</td>
</tr>
<tr>
<td>Prostate</td>
<td>209/427</td>
<td>1.84 (1.47, 2.32)</td>
<td><0.001</td>
</tr>
<tr>
<td>Non-melanoma skin</td>
<td>217/803</td>
<td>2.34 (1.90, 2.88)</td>
<td><0.001</td>
</tr>
<tr>
<td>Uterine</td>
<td>135/549</td>
<td>2.77 (2.07, 3.71)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Figure 2. Current smoking and risk of all-cause mortality.

Former Smoking and Other Cancers

(35,000 pts from NHIS)

<table>
<thead>
<tr>
<th>Cancer sites</th>
<th>Deaths/Person years</th>
<th>HR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cancer sites</td>
<td>4845/12994</td>
<td>1.31 (1.25, 1.38)</td>
<td><0.001</td>
</tr>
<tr>
<td>Bladder</td>
<td>260/501</td>
<td>1.21 (0.92, 1.58)</td>
<td>0.17</td>
</tr>
<tr>
<td>Breast</td>
<td>649/1962</td>
<td>1.27 (1.12, 1.43)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cervix</td>
<td>125/664</td>
<td>1.58 (1.16, 2.15)</td>
<td>0.004</td>
</tr>
<tr>
<td>Colon</td>
<td>530/1053</td>
<td>1.19 (1.02, 1.39)</td>
<td>0.032</td>
</tr>
<tr>
<td>Lung</td>
<td>482/714</td>
<td>1.32 (1.04, 1.67)</td>
<td>0.024</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>134/349</td>
<td>1.01 (0.76, 1.34)</td>
<td>0.934</td>
</tr>
<tr>
<td>Melanoma</td>
<td>242/823</td>
<td>1.31 (1.03, 1.67)</td>
<td>0.031</td>
</tr>
<tr>
<td>Prostate</td>
<td>931/2106</td>
<td>1.23 (1.07, 1.43)</td>
<td>0.005</td>
</tr>
<tr>
<td>Non–melanoma skin</td>
<td>689/2485</td>
<td>1.33 (1.18, 1.51)</td>
<td><0.001</td>
</tr>
<tr>
<td>Uterine</td>
<td>153/498</td>
<td>1.22 (0.95, 1.56)</td>
<td>0.112</td>
</tr>
</tbody>
</table>

Figure 3. Former smoking and risk of all-cause mortality.

Smoking and Other Cancers
(35,000 pts from NHIS)

<table>
<thead>
<tr>
<th>Smoking status</th>
<th>Subgroups</th>
<th>Cancer mortality</th>
<th>CVD mortality</th>
<th>Other mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deaths Person years HR (95% CI)</td>
<td>Deaths Person years HR (95% CI)</td>
<td>Deaths Person years HR (95% CI)</td>
<td></td>
</tr>
<tr>
<td>Never smoking</td>
<td>1386 15862 1 (Reference)</td>
<td>941 15862 1 (Reference)</td>
<td>2007 15862 1 (Reference)</td>
<td></td>
</tr>
<tr>
<td>Current smoking</td>
<td>825 6237 1.75 (1.57 to 1.95)</td>
<td>292 6237 1.73 (1.47 to 2.05)</td>
<td>770 6237 2.06 (1.83 to 2.33)</td>
<td></td>
</tr>
<tr>
<td>< 10 cigarette per day</td>
<td>1.4 (1.50 to 2.03)</td>
<td>1.83 (1.42 to 2.37)</td>
<td>1.80 (1.50 to 2.16)</td>
<td></td>
</tr>
<tr>
<td>≥ 10 cigarette per day</td>
<td>1.89 (1.67 to 2.14)</td>
<td>1.79 (1.47 to 2.18)</td>
<td>2.39 (2.09 to 2.75)</td>
<td></td>
</tr>
<tr>
<td>Former smoking</td>
<td>1768 12994 1.37 (1.25 to 1.49)</td>
<td>923 12994 1.08 (0.96 to 1.22)</td>
<td>2154 12994 1.38 (1.27 to 1.49)</td>
<td></td>
</tr>
<tr>
<td>Quit smoking < 10 years</td>
<td>1.67 (1.66 to 2.10)</td>
<td>1.50 (1.23 to 1.83)</td>
<td>1.88 (1.65 to 2.14)</td>
<td></td>
</tr>
<tr>
<td>Quit smoking 10-19 years</td>
<td>1.49 (1.31 to 1.68)</td>
<td>1.26 (1.07 to 1.48)</td>
<td>1.42 (1.27 to 1.60)</td>
<td></td>
</tr>
<tr>
<td>Quit smoking ≥ 20 years</td>
<td>1.09 (0.98 to 1.21)</td>
<td>0.91 (0.79 to 1.05)</td>
<td>1.21 (1.11 to 1.33)</td>
<td></td>
</tr>
<tr>
<td>P for trend</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td></td>
</tr>
</tbody>
</table>

- 75% increased risk for cancer mortality
- 73% increased risk for CVD mortality
- 106% increased risk for other mortality

- 37% increased risk for cancer mortality
- 8% (NS) risk for CVD mortality
- 38% increased risk for other mortality

Clinical Trials and Smoking

• Virtually all therapeutic trials have one or more of the following primary objectives
 • Overall survival
 • Cancer related survival (PFS, DFS, RFS)
 • Cancer treatment toxicity

• Smoking affects these primary objectives across disease sites and treatments
 • 50-60% median effects
 • Current smoking is different than former smoking
 • Smoking cessation can be an effect modifier

• How can we possibly justify the accuracy of clinical trial designs that ignore smoking
Smoking and Therapeutic Response

A. Relative SF

B. Tumor Doubling

C. Relative SF

D. Relative SF
Smoking and Targeting Response

Can we identify patients who can respond to targeted agents?
Smoking, ENDS and Response

A.

- **Control**
- **25% EC**
- **50% EC**
- **100% EC**

Relative SF

- A549
- H460

B.

<table>
<thead>
<tr>
<th>ENDS Media</th>
<th>H460 0 Gy</th>
<th>H460 6 Gy</th>
<th>A549 0 Gy</th>
<th>A549 6 Gy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.

- **CS → 0**
- **CS → 25% EC**
- **CS → 50% EC**

Relative SF

* indicates statistical significance.
Hypothetical Treatment Paradigm

Current Smoker

Immediate Structured Cessation Support

Biomarker Present

1. nAChR pharmacotherapy?
2. Pathway inhibitor?
3. Delayed cancer treatment?

Biomarker Absent

1. Non-nAChR pharmacotherapy?
2. No (or alternative) pathway inhibitor?
3. Immediate cancer treatment?
Mitigating the Effects of Smoking

- **Patients** are limited to the ability to choose to quit smoking and comply with treatments
 - Message is clear as day: quitting smoking is the best thing they can do to improve cancer treatment

- **Providers** are tasked with knowing smoking is bad, assessing, advising, and providing support
 - Providers are limited by health systems resources

- **Health systems** have the opportunity to identify the best approaches to cancer treatment and cessation
 - Largest impact on how to support mitigation of tobacco use lies here
Mitigating the Effects of Smoking

<table>
<thead>
<tr>
<th>System Level</th>
<th>Ability to Quit</th>
<th>Cancer Treatment</th>
<th>Cost of Treatment</th>
<th>Optimal Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provider</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institution</td>
<td>X</td>
<td>X</td>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>Insurer</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Health System</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Regulatory Agencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Warren Transl Lung Cancer Res 2019
Assessment of Tobacco Use in Cancer Clinical Trials

Stephanie R. Land, PhD
Program Director and Statistician
Tobacco Control Research Branch
Division of Cancer Control and Population Sciences
National Cancer Institute

Formerly:
Associate Professor of Biostatistics, University of Pittsburgh & Statistician, University of Pittsburgh Cancer Institute
Outline

• Rationale for assessing tobacco use in cancer clinical trials
• NCI-AACR Cancer Patient Tobacco Use Assessment Task Force
• How to assess tobacco use in cancer trials
 – Cancer Patient Tobacco Use Questionnaire (C-TUQ)
• Recommendations and discussion

The views expressed represent my own and not necessarily those of NCI.
Rationale for Assessing Tobacco Use in Cancer Clinical Trials

I. Tobacco use is both predictive & prognostic.

II. Scientific questions related to tobacco use in the setting of cancer therapy trials:
 – When and to what extent does tobacco diminish efficacy?
 – What are the mechanisms of tobacco’s effects?
 – What are the implications of tobacco use for dosage, treatment regimen, and timing of therapy?
 – How do other tobacco products (including electronic cigarettes) change prognosis or treatment efficacy?
Clinical Impact

Cancer patients and survivors who smoke cigarettes have worse health outcomes (including higher all-cause and cancer-specific mortality, and risk of tobacco-related second primary cancer).

Studies indicate that smokers may have higher risk of recurrence, poorer response to treatment, and increased toxicity.

Conclusion: Tobacco use should be considered in the evaluation of new cancer therapies.
Mortality and Smoking by Cancer Patients

• Relative risk of all-cause mortality*
 – Current smokers 1.5 (relative to never smokers)
 – Former smokers 1.2

• Relative risk of cancer-specific mortality*
 – Current smokers 1.6 (relative to never smokers)
 – Former smokers 1.03

• The evidence is suggestive but not sufficient to infer a causal relationship between smoking cessation and improved all-cause mortality in cancer patients who are current smokers at the time of a cancer diagnosis.**

Rates of smoking and quitting after diagnosis

Smoking rate at diagnosis:
- 40-60% lung/head/neck
- 24% all disease sites

Within 1 year:
- 50-70% quit

In survivorship:
- 12% smoke

Note: retrospective studies subject to survivor bias
→ prevalence at diagnosis under-estimated

Gritz, 2005; Rock, MMWR, 2007; Burris, CEBP, 2015; Shoemaker, ONF, 2016; NCI, CTPR, 2018
Smoking by lung and head/neck cancer patients

Burris, CEBP, 2015 (systematic review)
Current Approaches to Data Collection

• Not widely assessed in trials or practice
• Inconsistent tobacco use assessment methods

Patient reports 19-year history of smoking, starting at age 15, denies alcohol, divorced

• Little follow-up during/after treatment

Are associations due to exposure history, use during cancer therapy, or continued accrual of risk after therapy?

Primary recommendations include:

• Evaluate the confounding effects of tobacco on cancer treatment, disease progression, comorbid events, and survival in all oncology clinical trials from registration to survival endpoints.
“If tobacco use data are systematically collected and analyzed, the information would provide clinicians and regulatory agencies with the data needed to understand the impact of existing and new tobacco products.”

Hanna, ...Dresler, Tobacco Cessation and Control a Decade Later: American Society of Clinical Oncology Policy Statement Update, JCO, 2013
NCI-AACR Cancer Patient Tobacco Use Assessment Task Force

- Established in 2013
- Purpose (from the scientific and medical perspective): to develop recommendations for
 - patient-reported tobacco use measures
 - timing of assessment
 - research priorities
NCI-AACR Cancer Patient Tobacco Use Assessment Task Force

NCI
Moffitt Cancer Center
Mayo Clinic
MD Anderson Cancer Center
Medical U. of South Carolina
IASLC Smoking Cess. Tobacco Ctrl Cmte
Ohio State University
University of Wisconsin
University of Minnesota
Yale School of Medicine
Emory School of Medicine
Fred Hutchinson
Memorial Sloan-Kettering
Harvard
U. of California Los Angeles
University of Pennsylvania
AACR
Stephanie Land (chair), Jeffrey Abrams, Sandra Mitchell, Sheila Prindiville
Thomas H. Brandon
Jan C. Buckner, Scott J. Leischow
Paul M. Cinciripini, Ellen R. Gritz
K. Michael Cummings, Graham Warren, Benjamin Toll
Carolyn Dresler
Sonia A. Duffy, Peter Shields
Michael C. Fiore
Dorothy K. Hatsukami
Roy S. Herbst
Fadlo R. Khuri
Carol Moinpour
Jamie S. Ostroff
Nancy Rigotti, K. (Vish) Viswanath
Linda Sarna
Robert A. Schnoll
Shimere W. Sherwood
Recommended Measures of Tobacco Use by Cancer Patients

• **Cancer Patient Tobacco Use Questionnaire (C-TUQ)**
 – Designed by Task Force
 – Validated in cognitive interview study
 – Posted to cancercontrol.cancer.gov/brp/tcrb/tobacco-after-cancer-diagnosis.html

• **C-TUQ Core**: SHORT FORM for broad use

• **C-TUQ Extension**: Pool of items for comprehensive assessment

C-TUQ Core Constructs

- Ever smoked cigarettes
- Time since last cigarette
- Average number of cigarettes per day
- Total years smoked

The Task Force concluded that these are the essential constructs for minimal assessment in cancer trials.
C-TUQ Extension Constructs

<table>
<thead>
<tr>
<th>Smoking Constructs</th>
<th>Smoking Constructs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age first smoked</td>
<td>Trying to quit in past 30 days</td>
</tr>
<tr>
<td>Age began smoking regularly</td>
<td>Smoking cessation products in past 30 days</td>
</tr>
<tr>
<td>Smoking frequency during time periods related to</td>
<td>Smoking cessation products in past 30 days</td>
</tr>
<tr>
<td>cancer diagnosis and treatment</td>
<td>Quit assistance methods in past 30 days</td>
</tr>
<tr>
<td>Regular use of other products* since cancer diagnosis</td>
<td>Regular use of other products* (ever)</td>
</tr>
<tr>
<td>Longest time stayed off cigarettes since cancer</td>
<td>Other tobacco products in past 30 days</td>
</tr>
<tr>
<td>diagnosis</td>
<td></td>
</tr>
<tr>
<td>Smoking at all in past 30 days</td>
<td>Currently living with a smoker</td>
</tr>
<tr>
<td>Number of days smoked in past 30 days</td>
<td>Secondhand cigarette smoke exposure in home and work environments in past 30 days</td>
</tr>
<tr>
<td>Smoking cessation products since diagnosis</td>
<td>Secondhand cigarette exposure in home (ever) and total years</td>
</tr>
<tr>
<td>Quit assistance methods since diagnosis</td>
<td>Secondhand cigarette exposure in workplace (ever) and total years</td>
</tr>
<tr>
<td>Cancer doctors advised to quit</td>
<td></td>
</tr>
</tbody>
</table>

* Other products include combustible, smokeless, and aerosol products, e.g., e-cigarettes
C-TUQ Item 7

Capture smoking relative to diagnosis and treatment to address research questions related to impact of tobacco on surgical outcomes, toxicity, and treatment efficacy

Smoked every day, some days, not at all
a. The year before you were first told you had cancer
b. After diagnosis, and before treatment started
c. From 2 days before your last cancer surgery to 2 days after
d. During the course of treatment
e. After treatment ended
f. Since your last visit to this clinic
Task Force Recommendations

• Task Force recommends broad inclusion of C-TUQ items in cancer research

Standardized tobacco use assessment implemented in research across a range of disease sites and treatment modalities will permit data pooling and comparisons among populations.

• Detailed research priorities (See Land et al, CCR, 2016*)
• Timing of tobacco use assessment in clinical trials

Task Force
Recommended Timing of Assessment

- Minimal: registration and end of protocol therapy
- Recommended:
 - Before and after cancer surgery
 - Day 1 of each chemotherapy cycle
 - Beginning and end of radiation therapy
 - Beginning and end of other systemic therapy
 - 6-12 months after the end of cancer therapy

Or monthly
Cancer Patient Tobacco Use Questionnaire (C-TUQ) Usage

NCI DCP-001—Use of a Clinical Trial Screening Tool to Address Cancer Health Disparities in the NCI Community Oncology Research Program (NCORP)

SWOG Lung Master Protocol: S1400—Phase II-III Intergroup. A Biomarker-Driven Master Protocol for Previously Treated Squamous Cell Lung Cancer (Lung-MAP) (NCT02154490)

Other SWOG and ECOG-ACRIN trials
Many projects of the Cancer Center Cessation Initiative (C3I)

Translated to Spanish

Downloaded over 2500 times
Discussion
• Integration of tobacco use assessment into electronic health records is an opportunity.*
• Other tobacco products increasingly used.
• Tobacco use is time varying, not necessarily a stratification factor.

Conclusion
• Tobacco use is an important prognostic and predictive factor in cancer treatment, with implications for regimen, morbidity, and disease outcomes.
• At a minimum, tobacco use should be assessed at trial registration and end of protocol therapy.

* Warren, Cancer, 2014; Giuliani, JMIR, 2019
Objectives for future discussions

- Share knowledge of the impact of tobacco use in clinical trials and its importance for regulatory review
- Identify joint priorities of FDA, cancer therapeutics industry, academic researchers, AACR, IASLC, ASCO, and NCI
- Identify barriers and best practices to assessing tobacco use in clinical trials
- Mechanisms for increasing accurate tobacco use assessment in clinical trials
The views expressed represent my own and not necessarily those of NCI.

Contact:
Stephanie.land@nih.gov
Stay connected with us!

Sign up for our NCI Behavioral Research Program email updates at:
cancercontrol.cancer.gov/brpsubscribe
Follow us on Twitter: @NCIBehaviors
SESSION II:
Assessment Of Tobacco In Oncology Therapeutic Trials: Implementation

Session Moderators: Roy S. Herbst, MD, PhD, and Stephanie Land, PhD

Speakers:
Roy S. Herbst, MD, PhD
Elyse Park, PhD
Cathy Pietanza, MD
THE IMPACT OF SMOKING ON LUNG CANCER TREATMENT

FEBRUARY 28, 2020

ROY S. HERBST, MD, PHD
Ensign Professor of Medicine
Professor of Pharmacology
Chief of Medical Oncology
Director, Thoracic Oncology Research Program
Associate Cancer Center Director for Translational Research
The Burden of Lung Cancer

• The Leading Cause of Cancer Death in Most Countries
 – 1.8 M new cases, 1.6 M deaths \(^1\)

• US Lung Cancer: \(^2\)
 – 234,030 new cases (13.5% of all cancer cases)
 – 154,050 deaths (25% of all cancer deaths)

• 85% of lung cancer is NSCLC (~15% small cell) \(^3\)
 – 40% Adenocarcinoma, 30% Squamous cell carcinoma

Tobacco use is the single largest preventable cause of cancer, leading to 30% of all cancer-related deaths

TPS: Tumor Proportion Score; *For Lung Adenocarcinomas
Progress in Lung Cancer Treatment

1970s 1980s 1990s 2000s PRESENT

SURGERY RADIATION CHEMOTHERAPY CHEMOTHERAPY COMBINATIONS TARGETED THERAPY TARGETED THERAPY PLUS CHEMOTHERAPY NEXT-GENERATION TARGETED THERAPY IMMUNOTHERAPY

Picture adapted: www.vaidam.com
Cancer Therapy Trials

- Advance therapeutic outcomes through improved overall survival, disease control, toxicity profiles, or a combination thereof.

- Designing clinical trials that achieve clinically meaningful outcomes using evidence-based care and improving translation of evidence into clinical practice to improve clinical outcomes.

- Smoking can affect the primary endpoints of a clinical trial, the omission of routine tobacco use assessments introduces the risk of misinterpretation of results.
Research Priorities, Measures, and Recommendations for Assessment of Tobacco Use in Clinical Cancer Research

Stephanie R. Land¹, Benjamin A. Toll², Carol M. Moinpour³, Sandra A. Mitchell¹,
Jamie S. Ostroff⁴, Dorothy K. Hatsukami⁵, Sonia A. Duffy⁶, Ellen R. Gritz⁷, Nancy A. Rigotti⁸,
Thomas H. Brandon⁹, Sheila A. Prindiville¹⁰, Linda P. Sarna¹¹, Robert A. Schnoll¹²,
Roy S. Herbst¹³, Paul M. Cinciripini⁷, Scott J. Leischow¹⁴, Carolyn M. Dresler¹⁵,
Michael C. Fiore¹⁶, and Graham W. Warren²,¹⁷,¹⁸
Impact of smoking

- Analysis of 4,200 patients from a prospective National Comprehensive Care Network database found that continued smoking decreased survival in advanced patients with lung cancer.

- Meta-analysis of smoking and cessation on patients with early-stage lung cancer confirmed that smoking significantly decreased disease-free survival and overall survival while increasing the risk for developing second primary tumors.

- Smoking by patients with cancer increases their risk of developing new cancers at other sites. (e.g., patients with Hodgkin disease who smoke have a substantially enhanced risk of developing lung cancer after chemotherapy and/or radiotherapy)

Smoking Cessation

- Smoking cessation has immediate positive impact on health

- Improved treatment efficacy, survival, and quality of life
 - Smoking cessation may improve outcomes in patients with lung cancer and bladder cancer.

 - Study found that patients with lung or head and neck cancer who quit tobacco use within 12 months before a cancer diagnosis had improved survival as compared with current smokers.

Full execution of evidence-based cessation interventions is infrequent in oncology settings

• Tobacco use should be comprehensively and repeatedly documented for all patients so that the confounding effects of tobacco on cancer treatment, disease progression, comorbid events, and survival can be evaluated in all oncology clinical trials, from registration to survival endpoints, and in all clinical cancer settings.

Multiple Association statements (e.g., AACR, ASCO, etc.) suggest that oncology care should include tobacco cessation assistance.
AACR Policy Statement Recommendations

1. Patients with cancer from all clinical settings, including clinical trial participants and cancer screening patients, who use tobacco or have recently quit should be provided with evidence-based tobacco cessation assistance.

- Assistance should be provided to current users and recent quitters (past 30 days)
- Assistance should be provided within or associated with the oncology practice
- The oncology service provider should assume responsibility for ensuring that the patient receives appropriate care
- Oncology provider assistance can be supplemented with telephone quitline care by having patients call 1-800-QUIT-NOW
Universal assessment and documentation of tobacco use as a standard of care

- improved provision of cessation assistance to all patients
- further study of the deleterious effects of tobacco use
- further study of the benefits of tobacco cessation

Oncology service provider assumes responsibility for evidence-based tobacco cessation assistance (including quitlines)

- cancer patients from all clinical settings
- participants in therapeutic cancer clinical trials
- cancer screening patients who use tobacco or have recently quit (past 30 days)

2. Researchers should evaluate the confounding effects of tobacco on cancer treatment, disease progression, comorbid events and survival in all oncology clinical trials, from registration to survival endpoints.

- Smokers receiving erlotinib or irinotecan exhibited rapid clearance, requiring higher dose to reach equivalent systemic exposure compared to nonsmokers.
• S1400, the original screening/umbrella protocol included only squamous lung cancer.
• S1400 accrued patients between 6/16/2014 and 1/28/2019.
• LUNGMAP screening protocol (activated 1/28/19) allows all histologic types of NSCLC.
• Patients enrolled to S1400 may participate in sub-studies opened under LUNGMAP.
Smoking question asked during enrollment onto the Lung-MAP screening study (onstudy form)

Smoking history

<table>
<thead>
<tr>
<th>Current</th>
<th>Former (no smoking for 1 year or more)</th>
<th>Never (less than 100 cigarettes in lifetime)</th>
</tr>
</thead>
</table>

1. Have you smoked at least 100 cigarettes in your ENTIRE LIFE?
 - [] Yes
 - [] No
 - [] Don’t know/Not sure
 - [] Refused to answer

IF YES, PLEASE ANSWER THE FOLLOWING QUESTIONS:

2. How long has it been since you last smoked a cigarette (even one or two puffs)? Please check one of the following choices, either the number of days, weeks, months, or years, whichever applies to you.
 - [] I smoked a cigarette today (at least one puff)
 - [] Less than one week. Number of days:
 - [] Less than 1 month. Number of weeks:
 - [] Less than 1 year. Number of months:
 - [] More than 1 year. Number of years:

3. How many total years have you smoked (or did you smoke) cigarettes?
 - [] years

4. On average when you have smoked, about how many cigarettes do you (or did you) smoke a day?
 - [] Enter ‘1’ if less than 1.
 - [] Enter ‘99’ if 95 or more cigarettes.

Questionnaire completed at baseline and off-treatment for patients on Lung-MAP sub-studies
Development of reliable, valid, and standard measures of tobacco use

- robust data collection allows later pooling of data and meta-analysis that may elucidate potential mechanisms of change and specific populations or conditions that are more or less amenable to treatment.

Include evidence-based procedures in quality and accreditation protocols ("5 A’s")

- Ask about tobacco use at every clinic visit
- Advise to quit
- Assess interest in quitting
- Assist by providing counseling and pharmacotherapy
- Arrange follow-up

What is needed?

- Appropriate training, clinical infrastructure, and incentives for interventions
Lung SPORE Project Collaboration

Co-PIs

Brenda Cartmel, PhD
Yale University

Ben Toll, PhD
Medical University of South Carolina

Objective

Randomized clinical trial that will test 2 different, sequential interventions in lung cancer screening population. Both involve personalized prevention and are based on gain-framed messaging.
PIP: Study Design

276 Lung Nodule pts

- Gain-Framed messaging + standard cessation tx
- Standard cessation tx

Biomarker feedback
No Biofeedback
Biomarker feedback
No Biofeedback

Stratify on quit status

Quit date
Endpoint Intervention 1
Endpoint Intervention 2
Carotenoids are any of a class of mainly yellow, orange, or red pigments (including carotene) that give color to plants.

Well known that low concentrations of carotenoids in blood predict higher risk of various cancers including lung cancer.

Non-invasive method to objectively assess carotenoid status in human skin using a portable, rapid scanner, with visible light.

Mayne et al. (2013) *Archives Biochemistry Biophysics.*
What messages are most helpful for quitting?

Types of Framed Messages

- Gain-framed
 - Benefits of quitting smoking

- Loss-Framed
 - Costs of continuing smoking
Prospect Theory

- Nobel prize winning theory developed by Daniel Kahneman and Amos Tversky

- Prospect theory suggests:
 - Gains = people averse to risk
 - Losses = individuals seek risk

Tversky & Kahneman, 1981
Prospect Theory and Smoking Cessation

- Smoking cessation is a prevention behavior with a fairly certain outcome
 - Quitting linked to reduced risk of health problems like cancer

- Prospect theory suggests:
 - Gain-framed messages would be more persuasive for encouraging smoking cessation
 - Several studies support this hypothesis

Toll et al. (2014) Clinical Cancer Research
Examples of Framed Messages

<table>
<thead>
<tr>
<th>Gain-framed Messages</th>
<th>Loss-framed Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>If no one smoked, 430,000 lives would be saved in the United States each year.</td>
<td>Because people smoke, 430,000 lives are lost in the United States each year.</td>
</tr>
<tr>
<td>In addition to the physical benefits of quitting smoking, it can also have a positive impact on one’s social life.</td>
<td>In addition to the negative physical effects of smoking, it can have a negative impact on one’s social life.</td>
</tr>
</tbody>
</table>
Contact information

- Roy S. Herbst, MD PhD
 Ensign Professor of Medicine
 Professor of Pharmacology
 Chief of Medical Oncology
 Director, Thoracic Oncology Research Program
 Associate Cancer Center Director for Translational Research

Email: roy.herbst@yale.edu
Twitter: @DrRoyHerbstYale
Implementing assessment of tobacco use in cooperative group cancer trials

Elyse R. Park, Ph.D., MPH
Massachusetts General Hospital/Harvard Medical School
National Calls for Action

Tobacco Use Assessment and Treatment in Cancer Care
Rationale for Tobacco Use Assessment in Therapeutic Trials

The scope and patterns of tobacco use among cancer patients is limited

Tobacco use data collected in therapeutic trials vs. tobacco use data collected for smoking cessation trials

Information of the effects of tobacco use, among patients enrolled in clinical trials, is critically needed

Without tobacco use assessment there is no opportunity for treatment
Risk factors for tobacco use and lung cancer among Black adults

Risk Factors

Tobacco Use → Lung Cancer

↑ Incidence

- Socioeconomic factors (SES, education, environmental tobacco smoke exposure, stress)
- Menthol cigarette use
- ↓ Informed about tobacco risk

↓ Treatment access & utilization

- ↓ Provider advice to quit
- ↓ Engagement in behavioral & pharmacological treatment
- ↓ Enrollment in clinical trials

- Socioeconomic factors (SES, education, environmental tobacco smoke exposure)
- Medical comorbidities

↓ Enrollment in clinical trials

Poor lung cancer treatment outcomes

Park et al., The Oncologist, 2012
Smoking Rates of Participants

<table>
<thead>
<tr>
<th>Timepoint</th>
<th>Lung cancer</th>
<th>Colorectal cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ever Smoked</td>
<td>90.2%</td>
<td>54.8%*</td>
</tr>
<tr>
<td>Within 1 Year of Diagnosis</td>
<td>38.7%</td>
<td>13.7%*</td>
</tr>
<tr>
<td>5 Months Post-Diagnosis</td>
<td>14.2%</td>
<td>9.0%*</td>
</tr>
</tbody>
</table>

Park et al, Cancer, 2012
Among patients enrolled in Phase II and Phase III ECOG ACRIN (EA) therapeutic trials with varied cancers and cancer treatments, we are administering modified C-TUQ questions at trial enrollment and 3 and 6 month follow-up.
NCI Community Oncology Research Program (NCORP)
Research Priorities, Measures, and Recommendations for Assessment of Tobacco Use in Clinical Cancer Research

Abstract

There is strong evidence that cigarette smoking causes adverse outcomes in people with cancer. However, more research is needed regarding those effects and the effects of alternative tobacco products and of secondhand smoke, the effects of cessation (before diagnosis, during treatment, or during survivorship), the biologic mechanisms, and optimal strategies for tobacco dependence treatment in oncology. Fundamentally, tobacco is an important source of variation in clinical treatment trials. Nevertheless, tobacco use assessment has not been uniform in clinical trials. Progress has been impeded by a lack of consensus among cancer patients at the NIH Clinical Center to evaluate and improve the measurement items. The resulting Cancer Patient Tobacco Use Questionnaire (C-TUQ) includes "Core" items for minimal assessment of tobacco use at initial and follow-up time points, and an "Extension" set. Domains include the following: cigarette and other tobacco use status, intensity, and past use; use relative to cancer diagnosis and treatment; cessation approaches and history; and secondhand smoke exposure. The Task Force recommends that assessment occur at study entry and, at a minimum, at the end of protocol therapy.
Administrative Supplements for Collection and Analysis of Tobacco Use Data via the Cancer Patient Tobacco Use Questionnaire (C-TUQ), among Participants in NCTN and NCORP Clinical Trials

Purpose: The National Cancer Institute (NCI), Division of Cancer Control and Population Sciences (DCCPS) announces the opportunity for supplemental funding to support collection of new longitudinal data using the Cancer Patient Tobacco Use Questionnaire (C-TUQ) for participants enrolled to NCI Clinical trials Network (NCTN) and NCI Community Oncology Research Program (NCORP) clinical trials.
AIM 1: Treatment Toxicity

To determine the associations of combustible tobacco use patterns (status and rate) to:
- other forms of tobacco use
- environmental tobacco exposure
- provider-reported cancer-treatment toxicity (adverse events (both clinical and hematologic) and dose reductions and delays)
Aim 2: Symptom Burden

- To determine the effects of tobacco use on patient-reported physical symptoms and psychological symptoms
 - Prevalence
 - Interference
Aim 3: Cessation Patterns & Treatment

- To examine quitting behaviors and behavioral counseling/support and cessation medication utilization.
Aim 4: EA Trial Outcomes

- To explore the effect of tobacco use and exposure on treatment duration and dose intensity, and on therapeutic benefit, of EA trials.
Participant heterogeneity

- Adjuvant trials (recurrence-free survival is a typical outcome) as well as advanced disease trials (assessing overall survival is primary endpoint).
- Representation of cancer type, treatment regimen, tobacco-associated cancers, extent of disease, gender, and primary trial outcome (overall survival, disease-free survival, progression-free survival, recurrence-free survival).
Smoking Status Categories

- Current Smokers
 - Any cigarette use in the past 30 days
 - Differentiating 7 vs 30 day use

- Former Smokers
 - Smoked >100 cigarettes in lifetime
 - Differentiating use within past year vs greater than 1 year

- Never Smokers
Participants Reported Years Quit Prior to Diagnosis

Lung Cancer

% Quit in That Year

Years Quit

Colorectal Cancer

% Quit in That Year

Years Quit

Park et al, Cancer, 2012
Analyses

- Analyses will be conducted across categories of smokers
- Analyses will be conducted based on changes in smoking status
- Effects of sociodemographic characteristics will be explored
- Effects of cancer type and treatments will be explored
Survey Tobacco Use

- Use of other forms of tobacco
- Use of e-cigs
- Use of FDA approved cessation aids
- Use of behavioral support

Timeframe: Ever AND 30 days
Patterns of Use by Clinical Timepoint

<table>
<thead>
<tr>
<th>Timepoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>One year before diagnosis</td>
</tr>
<tr>
<td>After diagnosis, prior to treatment</td>
</tr>
<tr>
<td>2 days prior to surgery</td>
</tr>
<tr>
<td>During treatment</td>
</tr>
<tr>
<td>Since last cancer visit</td>
</tr>
</tbody>
</table>
Survey Tobacco Use

- Psychological symptoms
- Stigma
- Physical and behavioral symptoms (PRO–CTCAE)
 - Nausea
 - Pain
 - Sleep difficulties
 - SOB
 - Coughing
 - Fatigue
- Perceived associations of symptoms with current/past tobacco use (prevalence & interference)
Integrating PROs into AE reporting for clinical trials

Development of the National Cancer Institute’s Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE)

- JNCI 2014
- Clinician-rated CTCAE yield fewer, less severe symptomatic adverse events in comparison to patient-rated toxicities
 - More subjective symptoms (eg. fatigue, nausea) have greatest discrepancy between clinician- and patient-ratings
- https://healthcaredelivery.cancer.gov/pro-ctcae/
Perceived survey burden

Was completion of the tobacco use survey a burden to you?

☐ Not at all
☐ A little bit
☐ Somewhat
☐ Quite a bit
☐ Very Much
Participating Sites

- Activated 10 sites
- 7 currently active
 - Melanoma
 - Breast
 - Leukemia
 - H&N
 - GU
 - Lymphoma
 - Myeloma
 - Thoracic

- Tobacco use assessment must be included as part of overall trial data collection at trial activation
E/A TRIAL DATA COLLECTION TO DATE

<table>
<thead>
<tr>
<th>Category</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td># Eligible trial patients / # consented to tobacco study</td>
<td>1477/622 (42% of therapeutic trial patients)</td>
</tr>
<tr>
<td># Eligible trial patients enrolled in tobacco study</td>
<td>603</td>
</tr>
<tr>
<td># Tobacco study accounts activated</td>
<td>424 (70.3% enrolled patients activated)</td>
</tr>
<tr>
<td># Baseline surveys completed</td>
<td>411 of activated completed BL survey (97% activated completed BL survey)</td>
</tr>
<tr>
<td># 3-month follow-up surveys completed to date</td>
<td>271/371 (73.0%)</td>
</tr>
</tbody>
</table>
Data Sources

- Clinical data: Medidata Rave, used across the NCTN
 - Sociodemographics
 - Patient and disease characteristics
 - Treatment and toxicity
 - Clinical benefit and survival
- Adverse events: CTEP–AERS system
- Tobacco use questions: EASEEPRO, EA’s system for PRO collection
Tobacco Use Assessment in Therapeutic Trials: Recommendations

- Current and past combustible smoke use
- Dose/timing of use
- Exposure
- Other forms of tobacco use
- E–cig/vaping use
Oncology Drug Development: Industry Perspective
Disclosures

• Employee of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA

• Hold shares in Merck & Co., Inc., Kenilworth, NJ, USA
Why Collect Tobacco History?

- Treatment outcomes are affected by continued cigarette smoking in patients with all malignancies

- In those patients with any cancer, continued smoking is strongly associated with:
 - Increased treatment-related complications
 - Lower QoL scores and greater symptom burden, including fatigue, weight loss, concentration problems, and depression
 - Poorer response to treatment and lower survival rates
 - Increased risk of developing recurrence and second primary tumors

- The metabolism of some cytotoxic agents is impacted by smoking, affecting efficacy (e.g. erlotinib, irinotecan)

Importance of Tobacco History in Clinical Trials

• Early development of EGFR tyrosine kinase inhibitors first identified clinical characteristics that enriched for efficacy, including never-smoker status

• In 2004, three simultaneous studies reported that somatic mutations in the tyrosine kinase domain of EGFR (exon 19 deletions or L858R) exhibited significant tumor regressions when treated with gefitinib or erlotinib

• Between 2006 and 2008, numerous small, single-arm, prospective trials reported response rates of 55% to 91% utilizing gefitinib or erlotinib in patients with drug-sensitizing EGFR mutations

Importance of Tobacco History in Clinical Trials: iPASS

- The iPASS study evaluated gefitinib compared to carboplatin-paclitaxel as first line therapy in 1217 patients who were non-smokers or former light smokers in East Asia with adenocarcinoma of the lung
 - *Non-smokers* defined as patients who had smoked <100 cigarettes in their lifetime
 - *Former light smokers* defined as patients who had stopped smoking at least 15 years previously and had a total of ≤10 pack years of smoking
 - Study assessed role of *EGFR* mutation as a predictor of the efficacy of gefitinib or chemotherapy

EGFR mutation positive

- Hazard ratio, 0.48 (95% CI, 0.36–0.64)
- P<0.001
- Events: gefitinib, 97 (73.5%); carboplatin plus paclitaxel, 111 (86.0%)

EGFR mutation negative

- Hazard ratio, 2.85 (95% CI, 2.05–3.98)
- P<0.001
- Events: gefitinib, 88 (96.7%); carboplatin plus paclitaxel, 70 (82.4%)

- Study confirmed the predictive value of *EGFR* mutations for the responsiveness of lung adenocarcinoma compared to chemotherapy

Importance of Tobacco History in Clinical Trials: FLAURA

- FLAURA compared osimertinib, the third generation, irreversible EGFR-TKI, to gefitinib or erlotinib in patients with untreated EGFR-mutation positive advanced NSCLC (exon 19 del or L858R)
- Baseline characteristics included smoking history, although not defined in protocol

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Osimertinib (N=279)</th>
<th>Standard EGFR-TKI (N=277)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age — yr</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Median</td>
<td>26-85</td>
<td>35-93</td>
</tr>
<tr>
<td>Race — no. (%)</td>
<td>101 (36)</td>
<td>105 (38)</td>
</tr>
<tr>
<td>Male sex — no. (%)</td>
<td>101 (36)</td>
<td>100 (36)</td>
</tr>
<tr>
<td>Asian</td>
<td>174 (62)</td>
<td>173 (62)</td>
</tr>
<tr>
<td>Other</td>
<td>4 (1)</td>
<td>4 (1)</td>
</tr>
<tr>
<td>Smoking status — no. (%)</td>
<td>182 (65)</td>
<td>175 (63)</td>
</tr>
<tr>
<td>Never</td>
<td>8 (3)</td>
<td>9 (3)</td>
</tr>
<tr>
<td>Current</td>
<td>89 (32)</td>
<td>93 (34)</td>
</tr>
</tbody>
</table>

- Study demonstrated improvement in PFS for osimertinib in patients with EGFR mutations, regardless of smoking status

Problems with Collecting Tobacco Use History

• Lack of consistent definitions in the literature/guidelines:
 • NCCN:
 — Current smoker (patient smoked within the past 30 days)
 — Former smoker or recent quitter (patient smoked more than 30 days to 1 year prior)
 — Long term former smoker (more than 1 year since patient last smoked)
 — Never smoker
 • Southwest Oncology Group (SWOG):
 — Current smoker (patient smoked within the past 1 year)
 — Former smoker (patient had not smoked for 1 year or more)
 — Never smoker (defined as less than 100 cigarettes in lifetime)
 • National Health Interview Study:
 — Current smoker (patient smoked at least 1 cigarette within the past 30 days OR patient smoked within the past year)
 — Former smoker (defined as no smoking for 1 year or more)
 — Never smoker (patient has smoked fewer than 100 cigarettes in his/her lifetime)
Problems with Collecting Tobacco Use History

• Inadequate or inconsistent assessment and documentation of smoking status
 • Dependent on patient recall and associated with stigma

• Information collected in data bases, and dependent on pre-specified rules and ability to clean data points regarding tobacco history effectively
 • Data collected at one timepoint (generally baseline) during clinical trials

• Individual protocols and manuscripts do not consistently provide definitions for current and former smokers
Collection of Tobacco Use History in Merck Sponsored Clinical Trials

- History of tobacco use collected within the pembrolizumab program for the following indications:
 - Lung (including small cell and mesothelioma)
 - Head and neck
 - Esophageal
 - Hepatocellular carcinoma and biliary tract
 - Renal cell carcinoma, urothelial and bladder (including non-muscle invasive and muscle invasive)
Merck Sponsored Clinical Trials: Electronic Case Report Form for Tobacco Use

<table>
<thead>
<tr>
<th>Tobacco Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. * Substance Use Category [read-only]</td>
</tr>
<tr>
<td>5. Has the subject ever used tobacco?</td>
</tr>
<tr>
<td>6. * Cigarette</td>
</tr>
<tr>
<td>7. * Start Date of Cigarette Use</td>
</tr>
<tr>
<td>8. * Stop Date of Cigarette Use</td>
</tr>
<tr>
<td>9. * Number of Cigarettes Smoked Per Day</td>
</tr>
<tr>
<td>10. * Number of Years Smoked</td>
</tr>
<tr>
<td>11. * Number of pack-years [read-only]</td>
</tr>
<tr>
<td>12. * Cigarette Units [read-only]</td>
</tr>
<tr>
<td>13. * Other Tobacco Use</td>
</tr>
<tr>
<td>14. * Start Date of Other Tobacco Use</td>
</tr>
<tr>
<td>15. * Stop Date of Other Tobacco Use</td>
</tr>
</tbody>
</table>
How Has Merck Used Tobacco History?

- KEYNOTE-189, the Phase III study evaluating Pembrolizumab or placebo plus pemetrexed and platinum as first-line treatment in metastatic NSCLC, utilized tobacco history as a stratification factor
 - Current/former smoker vs never smoker
 - PD-L1 expression (TPS <1% vs ≥1%)
 - Choice of platinum (cisplatin vs carboplatin)

Overall Survival, ITT

Overall Survival in Key Subgroups

- **Subgroup**
 - Overall
 - Age:
 - <65 yr
 - ≥65 yr
 - Sex:
 - Male
 - Female
 - ECOG PS:
 - 0
 - 1
 - Smoking status:
 - Current/former
 - Never

- **No. of Deaths/No. of Patients**
 - Overall: 235/616
 - Age:
 - <65 yr: 133/312
 - ≥65 yr: 102/304
 - Sex:
 - Male: 143/363
 - Female: 92/253
 - ECOG PS:
 - 0: 74/266
 - 1: 159/346
 - Smoking status:
 - Current/former: 211/543
 - Never: 24/73

- **Hazard Ratio (95% CI)**
 - Overall: 0.49 (0.38-0.64)
 - Age:
 - <65 yr: 0.58 (0.44-0.77)
 - ≥65 yr: 0.68 (0.50-0.93)
 - Sex:
 - Male: 0.57 (0.43-0.76)
 - Female: 0.68 (0.50-0.93)
 - ECOG PS:
 - 0: 0.64 (0.48-0.87)
 - 1: 0.77 (0.57-1.04)
 - Smoking status:
 - Current/former: 0.77 (0.61-0.97)
 - Never: 1.28 (0.78-2.09)

- **Median OS (95% CI)**
 - NR (NE-NH)
 - 11.3 mo (8.7-15.1)

- **88% current/former smokers**

How Has Merck Used Tobacco History?

- Subgroup analyses, includes smoking status in trials where information collected.
- In KEYNOTE-042, the Phase III study of pembrolizumab vs platinum-based chemotherapy as first-line therapy for patients with PD-L1 positive locally advanced or metastatic NSCLC, smoking status was evaluated.

Overall Survival: TPS ≥1%a

<table>
<thead>
<tr>
<th></th>
<th>Events, n (%)</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembrolizumab</td>
<td>422 (66)</td>
<td>0.82</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>481 (76)</td>
<td>0.71–0.93</td>
</tr>
</tbody>
</table>

Median (95% CI)
16.4 mo (14.0–19.7) 12.1 mo (11.3–13.3)

Overall Survival in Subgroups, TPS ≥1%

<table>
<thead>
<tr>
<th>Smoking status</th>
<th>No. of Events/No. of Patients</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never</td>
<td>150/262</td>
<td>1.00 (0.74–1.34)</td>
</tr>
<tr>
<td>Former</td>
<td>516/271</td>
<td>0.73 (0.61–0.87)</td>
</tr>
<tr>
<td>Current</td>
<td>181/211</td>
<td>0.60 (0.57–1.20)</td>
</tr>
</tbody>
</table>

78% current/former smokers

Conclusions

• Assessing tobacco history remains important in the context of large, Phase III randomized trials

• In industry-sponsored trials, obtaining tobacco history has been limited due to:
 • Lack of standardized definitions for current and former smokers
 • Difficulty obtaining precise information from patients
 • Absence of serial collection during treatment

• At Merck, we continue to obtain tobacco history and may add other indications
 • Such data will allow us to better interpret outcomes in never-smokers and former/current smokers
 • Further, with robust tobacco history and data from clinical trials evaluating pembrolizumab in combination with chemotherapy and other agents, we will be better able to interpret never-smoker data in the setting of monotherapy treatment
SESSION III: Providing Tobacco Cessation Assistance To Cancer Patients

Session Moderators: Linda Bailey, JD, MHS, and Matthew Steliga, MD

Speakers:
Linda Bailey, JD, MHS
Laura Bierut, MD
Matthew Steliga, MD
Community-based cessation services: What services exist and how do smokers access them?

Linda Bailey, JD, MHS
President & CEO
North American Quitline Consortium

FDA-AACR-IASLC Workshop
Silver Spring, Maryland
February 28, 2020
Outline

- Smokers’ interest in quitting
- Types of community-based smoking cessation services
- Accessing quitlines and other cessation services
- Continuum of smoking cessation strategies
Adult smokers in the U.S.

- 68.0% are interested in quitting
- 55.4% attempted to quit in the past year
- 7.4% recent successful cessation

Evidence-base on smoking cessation treatment

Research-validated services
❖ Counseling (individual, group, quitline)
❖ 7 FDA approved medications

Other technology-based services
❖ Short text messages (sufficient evidence*)
❖ Web/Internet based interventions (can be effective*)
❖ Cessation apps (inadequate evidence*)

*SGR on Tobacco Cessation, 2020
Background on quitlines

❖ 53 state quitlines
❖ Funding - state and federal public health agencies
❖ 12 organizations that operate state quitlines (http://map.naquitline.org/reports/operators/)

❖ Each year state quitlines:
 • Receive ~ one million calls, 200K referrals*
 • Provide info to many friends, family and smokers
 • Enroll over 300,000 tobacco users in treatment*
 • Achieve quit rates of 30% (7 months post tx)

Quitlines - Community-based service with national reach

❖ Phone counseling with trained tobacco treatment specialists (research-validated protocols)

❖ FDA-approved medications (research-validated)

❖ Other technology-based services (promising)
 • Text messaging
 • Web/online services and information
 • Cessation apps
Information on types of quitline services in each state

For detailed information on the types of quitline services offered by your state, go to http://map.naquitline.org/ and click on the name of your state.
South Carolina Quitline Profile

Quitline: South Carolina Tobacco Quitline

- **Began Operations:** September 2004
- **Website:** http://www.scdhec.gov/quitforkeeps

Standard Hours of Operation

- Monday: 12:00 AM - 11:59 PM
- Tuesday: 12:00 AM - 11:59 PM
- Wednesday: 12:00 AM - 11:59 PM
- Thursday: 12:00 AM - 11:59 PM
- Friday: 12:00 AM - 11:59 PM
- Saturday: 12:00 AM - 11:59 PM
- Sunday: 12:00 AM - 11:59 PM
- Closed on: Independence Day, Thanksgiving Day, 1/2 day Christmas Eve, Christmas Day, 1/2 day New Year’s Eve, late open New Year’s Day

Telephone Numbers

<table>
<thead>
<tr>
<th>Line</th>
<th>Phone Number</th>
<th>Language/Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-800-QUIT-NOW</td>
<td>English/English</td>
</tr>
<tr>
<td>2</td>
<td>1-800-QUIT-NOW</td>
<td>Spanish</td>
</tr>
<tr>
<td>3</td>
<td>1-855-DEJERD-YA</td>
<td>Spanish</td>
</tr>
<tr>
<td>4</td>
<td>1-877-777-7534</td>
<td>Deaf/Hard of hearing</td>
</tr>
</tbody>
</table>

Supported Languages

- Counseling offered in: English, Spanish
- Third-party counseling: Deaf/Hard of hearing: Direct TTY machine

Services Offered

Phone Counseling

- Types:
 - ✅ brief intervention
 - ✅ multi-session (client-initiated)
 - ✅ Text Msg to cell phone (two-way)
 - ✅ single-session
 - ✅ multi-session (counselor-initiated)
 - ✅ Text Msg to cell phone (one-way)
- Length of standard first session: 30 min
- Length of standard follow-up session: 20 min
- Counseling session topics:
 - ✅ tobacco history
 - ✅ setting a quit date
 - ✅ relapse prevention
 - ✅ use of cessation medication
 - ✅ other
 - ✅ developing a quit plan
 - ✅ withdrawal symptoms
 - ✅ weight gain
 - ✅ stress management

Cessation Medications

- Free Medications:
 - ✅ patch
 - ✅ lozenge
 - ✅ inhaler
 - ✅ bupropion
- Discounted Medications:
 - ✅ gum
 - ✅ nasal spray
 - ✅ varenicline

Distribution Methods

- ■ voucher
- ■ by mail

Other Services

- ■ voice mail with callbacks
- ■ referral to other health services
- ■ recorded self-help messages
- ■ mailed info or self-help resources

Additional Info:
Also offer free combo NRT medications when indicated.
NAQC Quitline Profiles

Eligibility Criteria

To receive counseling:
- Single-call (1 session) offered to all enrollees. Readiness to quit desirable; not required. All enrollees must consent to services and call backs. Youth age 13-up, Uninsured, Medicare, Medicaid get multi-call (5 sessions). Pregnant/Postpartum get C-10 program (10 sessions) through post-delivery.

To receive medication:
- Registered participants who are uninsured, underinsured or have Medicare receive free medication. Pregnant/postpartum and under age 18 are not eligible for medication. Medicaid participants are referred to their provider for medication assistance.

Additional Info:
- South Carolina is committed to removing all barriers to quitting by waiving some restrictions based on a participant’s insurance coverage, maximum benefits, and inability to obtain effective medication support. We provide counseling support to all enrollees regardless of insurance status. We turn no one away.

Specialized Materials

<table>
<thead>
<tr>
<th>Specialized Materials</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Youth, under 18</td>
<td>Youth, 18-25</td>
</tr>
<tr>
<td>Older tobacco users, 55+</td>
<td>Smokeless tobacco users</td>
</tr>
<tr>
<td>Pregnant tobacco users</td>
<td>Multiple addictions</td>
</tr>
<tr>
<td>Racial/ethnic populations</td>
<td>Lesbian, gay, bisexual or transgender</td>
</tr>
<tr>
<td>Chronic health conditions</td>
<td>Low socioeconomic status or Medicaid</td>
</tr>
<tr>
<td>Low literacy</td>
<td>Other</td>
</tr>
<tr>
<td>Mental health disorders including psychiatric conditions</td>
<td></td>
</tr>
</tbody>
</table>

Additional Info:
- SC’s Quit Guide supports all of the specific audiences listed above with the purpose of addressing the universal dependency of tobacco and nicotine. The SC Quit Guide and Quitting Smokeless Tobacco Guide were updated in 2016. Youth under age 18 are no longer sent printed materials, but are given digital information, e.g. mobile apps, when they enroll for services. Also included in the standard mailed packet is a brochure about the QuitConnect online support community www.quitconnect.org.

Provider Referral Program

- Fax or electronic referral program: Yes
- Person(s) eligible to refer patients:
 - Certified or trained fax referral providers
 - Clinicians or non-clinicians in a healthcare setting
 - Clinicians or non-clinicians in a community-based organization
 - Other
- Available referral methods:
 - Fax
 - Email or online
 - EMR with electronic submission
- Tobacco users can be referred if they:
 - Are thinking about quitting
 - Indicate a readiness to quit within 30 days
 - Are ready to make a quit attempt
 - Are quit and seek help to stay quit
- Referred patients contacted: Within 48 hours
- Other services available to referring providers:
 - Quitline and/or referral brochures
 - Customized referral/consent forms
 - Patient progress reports
 - Customized provider feedback reports
 - Staff training
 - Quitline/referral program newsletter
- Referral program contact: Dr. Katy L. Wynne
 - SC DHEC Division of Tobacco Prevention and Control
 - (803) 898-2265
 - wynnkel@dhec.sc.gov
- Other information: Free CME training at http://www.healthpatientsquitsc.org and eReferral training at www.scquitline.org
Quitlines accept fax, online and eReferrals

- Fax referral*: 100%
- Email/online referral*: 87%
- eReferral**: 45%

*Data source: NAQC quitline profiles, 2017
**Data source: 2016 Quitline Vendor eReferral Survey (2017 update)
Continuum of strategies to encourage patients to seek cessation services

1. CDC’s national media campaign, Tips from Former Smokers (no clinician involvement)

2. Patient resources - CESSATION WORKS! cards for distribution to smokers in health care settings.

CDC videos “What is a quitline?”

https://www.cdc.gov/tobacco/campaign/tips/resources/index.html

https://www.cdc.gov/tobacco/campaign/tips/quit-smoking/quitline/index.html?s_cid=OSH_tips_A0001
Continuum of strategies to encourage patients to seek services (page 2)

3. “Direct referral” by clinician to quitline (use ACC pathway)
 https://doi.org/10.1016/j.jacc.2018.10.027 (higher level of clinician involvement)

4. Tailored protocol that can be developed collaboratively by quitlines and clinicians to provide best cessation support while keeping clinician informed (high level of clinician involvement)
 Ex. Quitline protocol for smokers with behavioral health conditions offers more counseling, more medications and keeps clinician informed of progress to ensure BH meds are adjusted as needed.
Other community-based cessation services with national reach

<table>
<thead>
<tr>
<th>Group Counseling</th>
<th>Individual Counseling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freedom from Smoking</td>
<td>ATTUD provider list</td>
</tr>
<tr>
<td>American Lung Association</td>
<td>https://www.attud.org/treatment-provider.php to search for local</td>
</tr>
<tr>
<td>1-800-LUNG-USA</td>
<td>TTS-certified provider</td>
</tr>
<tr>
<td>https://www.lung.org/stop-smoking</td>
<td>Hours: varies</td>
</tr>
<tr>
<td>Hours: varies</td>
<td>Hours: varies</td>
</tr>
<tr>
<td>Cost: varies</td>
<td>Cost: varies</td>
</tr>
<tr>
<td>Languages: English and Spanish</td>
<td>Languages: varies</td>
</tr>
</tbody>
</table>
Other community-based cessation services with national reach

Smokefree.gov
www.smokefree.gov
Hours: 24/7
Cost: none
Languages: English and Spanish
Services: web counseling, chat, tools and info, text messaging, apps
Special services: Vet, women, teens, 60+

Become an Ex
www.becomeanex.org
Hours: 24/7
Cost: free for individuals ($ for Emp/Health Plans)
Services: web chat, coach tools, info, email, txt msg

Moving quitlines forward.
For more information on quitlines please contact:

Linda Bailey, JD, MHS
President & CEO
Email: lbailey@naquitline.org
Integration of Tobacco Cessation in a Surgery Oncology Program

Matthew A. Steliga MD
Associate Professor
Thoracic Surgery / Tobacco Cessation
University of Arkansas for Medical Sciences
Winthrop P. Rockefeller Cancer Institute
Little Rock, Arkansas

Twitter: @SteligaMD
Disclosure

- Matthew A. Steliga MD
- No conflicts of interest
- No disclosures
- No off-label discussion
Points

• Why integrate cessation into clinical care
• Evolution of our program / lessons learned
• Different ‘arms’ of our programs
 • Lung Screening
 • Outpatient clinic
 • Inpatient
Importance of Integration of Tobacco Cessation

- High proportion of population smoking
- Smoking impacts treatment outcomes
- Cessation reduces risk
- Patients may be unfamiliar or reluctant to seek help
- Access to cessation resources can be a barrier
Specific examples:
Impact of tobacco on survival NSCLC

- Telephone survey of lung cancer patients who smoke
- Controlled for age, pack year history, stage, PS, etc.
- Current tobacco use associated with increase in death (HR 1.79)
- Median survival 20.0 vs 29.0 months.

Dobson-Amato KA, J Thoracic Onc 2015.
Lessons learned

• Only giving patients print information for referral seemed to have minimal impact

• Referral to a counselor was often declined

• Sending them to the resources was not working

• Brought cessation to the patient

• Certified Tobacco Treatment Specialist (CTTS training)
 • MD, APRN, RN, RT, and others.

• Opt-Out is accepted
In our lung screening program:

- Small minority may have lung cancer (2.3%; 10/440)
- Well developed protocols to diagnose, stage and treat lung cancer
- Large (potentially overlooked) proportion currently smoking. (70.2%; 309/440)
- May be motivated to quit
- “Teachable moment”
- Delivery of cessation services may be lacking or quite variable
Tobacco Cessation in Lung Cancer Screening

- Tobacco assessment and cessation referral recommended for all lung screening patients

- Counseling & pharmacotherapy improve cessation rates

- The actual cessation resources can be variable and may be as minimal as printed material with a referral phone number.

- Delivering cessation resources to patients in a screening program may be challenging due to scheduling, cost, and patient compliance.
Automated Tobacco Assessment and Cessation for Cancer Patients

- Integration should be standard of care and part of treatment
- Patients may opt out, but default path includes cessation services for cancer patients
- This principle could be applied to screening programs.

From: Warren GW et al., Cancer 2014
Integration in Screening

• By training the LDCT coordinator as CTTS, cessation resources are automatically integrated in the program and may reach most patients.
Intake and Initial Phone Intervention

- Initial conversation:
 - Brief phone intervention for all active smoking (309/309; 100%)
 - Reinforce abstinence for those who have quit
 - Schedule LDCT

- **ASK** every patient about former and current tobacco use.

- **ADVISE** all patients to quit and discuss benefits of cessation

- **REFER** patients to evidence based cessation resources: Tobacco Cessation Specialist, Group Counseling, Phone Service (1-800-QUIT-NOW)
LDCT and Face-to-face Individual Intervention

- Coordinator:
 - Meets patient at the point of the LDCT
 - Initiates discussion of cessation resources and offers discussion while they are there for the LDCT

- ASK every patient about former and current tobacco use.
- ADVISE all patients to quit with a personalized message & discuss benefits of cessation
- ASSESS dependence on tobacco and willingness to quit
- ASSIST with behavioral counseling, pharmacotherapy
- ARRANGE follow up plan (in person, or if not possible - by telephone)
Lung Screening Cessation Outcomes

- 70.2% (309/440) of those referred for LDCT were actively smoking.
- 100% (309/309) = Telephone intervention by a CTTS.
- Of the 309 patients currently smoking:
 - 80.6% (249/309) were receptive to face-to-face counseling when provided at the point of service.
 - 18.4% (57/309) did not meet the CTTS due to: not going to the scan at their scheduled time, arriving after hours, or radiology not notifying the CTTS.
 - 1.0% (3/309) were offered counseling and refused.
Lung Screening Cessation Outcomes

- Patient’s were receptive to counseling, and the counseling could be delivered in the workflow, but did it make a difference?

- 263 patients actively smoking at the time of the scan.

- 12.9% (34/263) quit at 1 year follow up.

- 87.1% (229/263) actively smoking at one year follow up.

- Of the 229 still smoking, follow up data about the amount was available for 156.

- Of those who were still smoking and we know the quantity, 50% (78/156) had reduced the amount smoked each day.
Lung Screening Cessation Outcomes

• Goals of screening-
 • Detect nodules?
 • Detect cancer?
 • Overarching goal is to improve health outcomes.

• Not assessing and addressing tobacco use ignores a great opportunity to measure risk factors and impact outcomes.
Tobacco Cessation in Thoracic Surgery Oncology Clinic

- Tobacco use impacts outcome
 - Smoking-linked with cancer progression.
- Drug Interactions
 - Complications impacting care and survival
 - Long term risk- heart disease, cancer, etc.
- Counseling & pharmacotherapy improve cessation rates
- Referral to an outside resource may have poor uptake
- Much time in the physician’s office is waiting, and an opportunity.
Outpatient Clinic Cessation

• By training the APRN, MD, and RNs, cessation resources are automatically integrated in the workflow

• Counseling in clinic
• Quitline enrollment
• Referral to on-campus group
• Individual phone follow up

Blue boxes indicate tobacco cessation resources
Outpatient Clinic Cessation Outcomes

• Patients are receptive to counseling, and the counseling is delivered in the workflow, but did it make a difference?

• 17 months: 275 patients actively smoking at the time of the visit.

• 87% (240/275) follow up data available.

• Of the 240 with follow up data:

 • 2.9% (7/240) increased the amount smoked

 • 23.3% (56/240) did not change

 • 29.2% (70/240) decreased the amount smoked

• 44.6% (107/240) quit smoking
Tobacco Use in Cancer Care

• Goal not merely to do surgery, give drugs, or administer radiation, but the goal is to improve health.

• Ongoing use impacts outcomes and harms our mission

• Quitting improves outcomes

• Assessment should be automatic— with intake vital signs.

• Once assessed, patients can be targeted for cessation resources.

• Framing tobacco as an integral part of care is logical and accepted.

• Cessation resources are accepted and effective.

• Ignoring tobacco use in clinical care misses an opportunity for optimal care, and harms outcomes.
Specific examples:
Impact of tobacco on survival NSCLC

- Telephone survey of lung cancer patients who smoke.
- Controlled for age, pack year history, stage, PS, etc.
- Current tobacco use associated with increase in death (HR 1.79)
- Median survival 20.0 vs 29.0 months.

Dobson-Amato KA, J Thoracic Onc 2015.
Specific examples:
Impact of tobacco on survival NSCLC

- The impact of tobacco use on outcomes is significant and warrants assessment in order to provide an accurate understanding of outcomes in any cancer population undergoing treatment.

Dobson-Amato KA, J Thoracic Onc 2015.
Thank you

- MASteliga@uams.edu

- Twitter @SteligaMD
Smoking cessation and harm reduction in context of oncology clinical care:
Clinical Guidelines

Laura Jean Bierut, MD
Alumni Endowed Professor of Psychiatry
February 2020
Quitting smoking is one of the most important things you can do for your health.
These guidelines are focused on smoking cessation recommendations for patients with cancer. There are health benefits to smoking cessation even after a cancer diagnosis, regardless of stage or prognosis, namely improvement in cancer treatment outcomes, primary cancer recurrence, and secondary cancers. It is never too late for patients with cancer to stop smoking cigarettes and experience health benefits.
Smoking – the 5th vital sign

Smoking status should be documented in the patient health record. Patient health records should be updated at regular intervals to indicate changes in smoking status, quit attempts made, and interventions utilized.

Have you smoking cigarettes in the last month?
How many cigarettes do you smoke per day?
Medications work, counseling works, both are best

Combining pharmacologic therapy and behavior therapy is the most effective approach and leads to the best results for smoking cessation.

• The two most effective pharmacotherapy agents are combination nicotine replacement therapy (NRT) and varenicline.
• High-intensity behavior therapy with multiple counseling sessions is most effective, but at least a minimum of brief advice is highly recommended.
• Quitlines may be used as an adjunct, especially in lower-resource settings. 1-800-QUIT-NOW
Evidence based care is not implemented

The New York Times

Surgeon General Says ‘Shocking’ Portion of People Aren’t Told to Stop Smoking

In a new report, he cited a number of helpful smoking cessation methods but said that e-cigarettes haven’t yet been proven to be an effective method.

“Far too many people who want to quit aren’t getting access to the cessation treatments that we know work,” said Dr. Jerome Adams, the surgeon general. Eric Baradat/Agence France-Presse — Getty Images

Smoking Cessation

A Report of the Surgeon General

U.S. Department of Health and Human Services
Siteman Cancer Center selected for the Cancer Moonshot Initiative to reduce tobacco to better prevent and treat cancer

LiShiun Chen, MD, MPH, ScD, Alex Ramsey, PhD, and Laura Bierut, MD
Implementation Science to Move from Specialist-Referral to Point-of-Care

Our Failure
Specialist Referral Program
DEFUNDED

- Low reach
- Patients not referred
- Patients missed appointments
- Not cost-effective or scalable

Patient: “You all asked me about smoking many times, but no one has offered any help!”
Implementation Science to Move from Specialist-Referral to Point-of-Care

Our Approach
Systems and Implementation Science

✓ Systematic barrier assessment
✓ Identified leverage points
✓ Stakeholder-driven implementation strategy

Our Failure
Specialist Referral Program
DEFUNDED

x Low reach
x Patients not referred
 x Patients missed appointments
 x Not cost-effective or scalable

Patient: “You all asked me about smoking many times, but no one has offered any help!”
Implementation Science to Move from Specialist-Referral to Point-of-Care

Patient: "You all asked me about smoking many times, but no one has offered any help!"

Our Strategy
Incorporating point of care treatment

✓ Systematic barrier assessment
✓ Identified leverage points
✓ Stakeholder-driven implementation strategy

Our Approach
Systems and Implementation Science

✓ Low reach
 ✓ Patients not referred
 ✓ Patients missed appointments
 ✓ Not cost-effective or scalable

Our Failure
Specialist Referral Program
DEFUNDED
Implementation Science to Move from Specialist-Referral to Point-of-Care

Our Success
Increasing cessation treatment

Our Strategy
Incorporating point of care treatment

Our Approach
Systems and Implementation Science

✓ Systematic barrier assessment
✓ Identified leverage points
✓ Stakeholder-driven implementation strategy

Our Failure
Specialist Referral Program
DEFUNDED

✗ Low reach
✗ Patients not referred
✗ Patients missed appointments
✗ Not cost-effective or scalable

BMJ Open
Leverage points to improve smoking cessation treatment in a large tertiary care hospital: a systems-based mixed methods study

Alex T Ramsey, Donna Prentice, Ellis Ballant, Li-Shiun Chen, & Laura J Bierut

Patient: “You all asked me about smoking many times, but no one has offered any help!”
Goals
- Every patient is assessed
- Every smoker is offered treatment
- Increased smoking cessation

<table>
<thead>
<tr>
<th>N patients</th>
<th>Prevalence of smokers</th>
<th>Assessment</th>
<th>% patients assessed</th>
<th>Reach</th>
<th>% received treatment</th>
<th>Effectiveness</th>
<th>% smokers quit</th>
</tr>
</thead>
<tbody>
<tr>
<td>January-June 2018</td>
<td></td>
<td></td>
<td>34,223</td>
<td>--</td>
<td>48%</td>
<td>2%</td>
<td>12%</td>
</tr>
<tr>
<td>July-December 2018</td>
<td></td>
<td></td>
<td>27,753</td>
<td>11%</td>
<td>89%</td>
<td>28%</td>
<td>17%</td>
</tr>
<tr>
<td>January-June 2019</td>
<td></td>
<td></td>
<td>27,728</td>
<td>13%</td>
<td>93%</td>
<td>43%</td>
<td>Data being collected</td>
</tr>
</tbody>
</table>

June 2018

Point of Care

- **Refer to specialist**
 - Jan-June 2018: 34,223
 - July-Dec 2018: 27,753
 - Jan-June 2019: 27,728

- **Point of Care**
 - Prevalence of smokers: 11%
 - Assessment: 48%
 - Reach: 2%
 - Effectiveness: 12%

June 2018

- **Point of Care**
 - Prevalence of smokers: 11%
 - Assessment: 89%
 - Reach: 28%
 - Effectiveness: 17%

June 2018

- **Point of Care**
 - Prevalence of smokers: 11%
 - Assessment: 93%
 - Reach: 43%
 - Effectiveness: 17%

June 2018

- **Point of Care**
 - Prevalence of smokers: 11%
 - Assessment: 93%
 - Reach: 43%
 - Effectiveness: 17%
A paradigm shift - point of care model within a learning health system

- More tobacco use assessment: 90% vs 48%
 - 2x
- More patients treated with medication: 17% vs 3%
 - 5x
- More patients offered counseling: 21% vs < 1%
 - 30x
- More likely to quit smoking if treated: 36% vs 10%
 - 3x

Most Cost Effective Program Among Cancer Centers

TBM
Change is the one constant

AUGUST 20, 2013

The Ambiguous Allure of the E-Cig

INTRODUCTION

French actress Karole Rocher smokes an electronic cigarette at the 66th Cannes Film Festival in France earlier this year.

DEBATERS

- **What’s Not to Like?**
 - MICHAEL SIEGEL, BOSTON UNIVERSITY
 - Many anti-smoking groups oppose e-cigarettes because they find it difficult to endorse a behavior that looks like smoking, even though it is saving people’s lives.

- **FDA Oversight Badly Needed**
 - HAROLD P. WAWNER, AMERICAN LUNG ASSOCIATION
 - F.D.A. tests of e-cigs and their cartridges have revealed detectable levels of cancer-causing chemicals, including an ingredient used in anti-freeze.

- **Looser Rules for Life-Saving E-Cigs**
 - LINDA FOX, BLOGGER, FOREVER SMOKER

- **The Danger of Flavor**
 - DELMONTE JEFFERSON, NATIONAL AFRICAN AMERICAN TOBACCO PREVENTION NETWORK

Washington University School of Medicine in St. Louis
Electronic Nicotine Delivery Systems - E-cigarettes

E-cigarettes are not FDA-approved smoking cessation devices.

“There is substantial evidence that except for nicotine, under typical conditions of use, exposure to potentially toxic substances from e-cigarettes is significantly lower compared with combustible tobacco cigarettes.”

“There is conclusive evidence that completely substituting e-cigarettes for combustible tobacco cigarettes reduces users’ exposure to numerous toxicants and carcinogens present in combustible tobacco cigarettes.”

Public Health Consequences of E-Cigarettes
The National Academies of Sciences Engineering and Medicine 2018
Update: Interim Guidance for Health Care Providers Evaluating and Caring for Patients with Suspected E-cigarette, or Vaping, Product Use Associated Lung Injury — United States, October 2019

Weekly / October 18, 2019 / 68(41):919-927
Vaping Illnesses Are Linked to Vitamin E Acetate, C.D.C. Says

Samples of lung fluid from patients with the mysterious illness led to a breakthrough in finding a possible cause. More than 2,000 people have been sickened, many from illicit marijuana-based products.
F.D.A. Permits the Sale of IQOS, a New Tobacco Device

Our Tobacco Heating System

IQOS

Tobacco Meets Technology

Washington University School of Medicine in St. Louis
The enemy is combustible cigarettes

- Patients should be encouraged to use the most effective evidence based methods to quit combustible cigarettes.
- Not all tobacco products have the same risk.
- Many misperceptions exist about the dangers of tobacco products, both underestimating risk and overestimating risk.
- Smoking cessation after a cancer diagnosis extends life and reduces morbidity associated with treatment.

A harm reduction approach is also important!
It is never too late to stop smoking

There are health benefits to smoking cessation even after a cancer diagnosis, regardless of stage or prognosis, namely improvement in cancer treatment outcomes, disease recurrence, and secondary cancers.
SESSION IV:
Tobacco Cessation In Oncology Patients: Challenges And Lessons Learned
Session Moderator: Brenna VanFrank, MD, MSPH

Speakers:
Glen D. Morgan, PhD
Graham Warren, MD, PhD
Fumiko Chino, MD
TOBACCO CESSATION IN ONCOLOGY PATIENTS: CHALLENGES AND STRATEGIES

BRENNA VANFRANK, MD, MSPH | SENIOR MEDICAL OFFICER

FDA-AACR-IASLC WORKSHOP TO ADDRESS THE CRITICALITY OF TOBACCO USE ASSESSMENT IN ONCOLOGY THERAPEUTIC TRIALS • 2/28/2020
TOBACCO USE REMAINS A SIGNIFICANT PUBLIC HEALTH PROBLEM

Tobacco use is the leading cause of preventable disease, disability, and death in the US

34M
An estimated 34.2 million U.S. adults smoked in 2018.

480,000
Cigarette smoking and secondhand smoke exposure kill about 480,000 people in the U.S. each year.

All Organs
Smoking impacts nearly every organ system in the body and causes disease and death.

1 vs. 30
For every one smoking-related death, at least 30 people live with a serious smoking-related illness.

$300B
Each year, cigarette smoking costs the United States more than $300 billion, including $170 billion in direct medical costs and $156 billion in lost productivity.

What Are The Challenges?

- Disparities in tobacco use and cessation
- Underutilization of tobacco cessation treatment
- Evolving tobacco product landscape
TOBACCO-RELATED DISPARITIES PERSIST

Current Cigarette Smoking Among U.S. Adults – NHIS, 2018

Race/Ethnicity
- 22.6% American Indians/Alaska Natives
- 15% White

Education Level
- 36% GED
- 3.7% Graduate degree

Annual Household Income
- 21.3% <$35,000
- 7.3% ≥$100,000

Health Insurance Coverage
- 23.9% Uninsured
- 23.9% Medicaid
- 10.5% Private
- 9.4% Medicare

Disability/Limitation
- 19.2% Yes
- 13.1% No

Sexual Orientation
- 20.6% Lesbian/Gay/Bisexual
- 13.5% Heterosexual

Serious Psychological Distress
- 31.6% Yes
- 13.0% No

GEOGRAPHIC DISPARITIES EXIST

Adult Prevalence of Current Smoking, BRFSS

Source: Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System, Behavior Risk Factor Surveillance System (BRFSS). Updated 12/2018
CESSATION REMAINS A CHALLENGE

Most people who smoke want to quit

Half make a serious attempt each year

about 1 in 14 report recent successful cessation

Treatment can double the odds of success

WE KNOW WHAT WORKS FOR CESSATION

Evidence-based interventions that increase quit rates:

- Advice to quit from a health care professional
- Counseling: individual, group, telephone, web, text
- 7 FDA-approved medications
- Barrier-free insurance coverage of these treatments
- Health systems changes to integrate treatment into routine care
Tobacco Cessation Interventions Are Underutilized

How U.S. Adults Tried to Quit Smoking, 2015

- 57% received clinician advice to quit
- 69% did NOT use evidence-based cessation treatment
- Far more used medication (29%) than counseling (6.8%)
- < 5% used BOTH counseling and medication

Disparities in Quitting

Quit Attempt

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Quit Attempt (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asian</td>
<td>69.4%</td>
</tr>
<tr>
<td>Black</td>
<td>63.4%</td>
</tr>
<tr>
<td>White</td>
<td>53.3%</td>
</tr>
</tbody>
</table>

Quit Success

<table>
<thead>
<tr>
<th>Insurance</th>
<th>Quit Success (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private insurance</td>
<td>9.4%</td>
</tr>
<tr>
<td>Medicaid</td>
<td>5.9%</td>
</tr>
<tr>
<td>Uninsured</td>
<td>5.2%</td>
</tr>
</tbody>
</table>

Use of Evidence-Based Treatment

<table>
<thead>
<tr>
<th>Group</th>
<th>Use (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>34.3%</td>
</tr>
<tr>
<td>Asian</td>
<td>20.5%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>19.2%</td>
</tr>
<tr>
<td>Straight</td>
<td>31.7%</td>
</tr>
<tr>
<td>LGB</td>
<td>14.5%</td>
</tr>
<tr>
<td>Private insurance</td>
<td>32.1%</td>
</tr>
<tr>
<td>Uninsured</td>
<td>21.4%</td>
</tr>
</tbody>
</table>

Clinical Advice

<table>
<thead>
<tr>
<th>Group</th>
<th>Clinical Advice (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>60.2%</td>
</tr>
<tr>
<td>Asian</td>
<td>42.2%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>34.2%</td>
</tr>
<tr>
<td>Private insurance</td>
<td>32.1%</td>
</tr>
<tr>
<td>Uninsured</td>
<td>21.4%</td>
</tr>
</tbody>
</table>

U.S. Adults – NHIS, 2015

THE TOBACCO PRODUCT LANDSCAPE CONTINUES TO EVOLVE

- Smokeless
- Snus
- Cigarettes
- Cigars, Cigarillos, Little Cigars
- Pipes
- Hookah
- Bidis
- Kretks
- Dissolvables
- Heated Tobacco Products
- E-cigarettes
What Are The Strategies?

- Contemporizing comprehensive treatment
- Clinical integration of treatment
- Comprehensive, barrier-free insurance coverage
- Population-level interventions
Behavioral counseling and cessation medications are independently effective in increasing smoking cessation, and even more effective when used in combination.

Tobacco dependence is a chronic, relapsing condition driven by addiction to nicotine.
Access the Change Package at: https://millionhearts.hhs.gov/files/Tobacco_Cessation Change_Pkg.pdf
“Development and dissemination of evidence-based clinical practice guidelines increase the delivery of clinical interventions for smoking cessation.”

“With adequate promotion, comprehensive, barrier-free, evidence-based insurance coverage increases the availability and utilization of treatment services for smoking cessation.”

“Strategies that link smoking cessation-related quality measures with payments to clinicians, clinics, or health systems increase the rate of delivery of clinical treatments for smoking cessation.”

“Evidence is suggestive, but not sufficient, to infer that electronic health record technology increases the rate of delivery of smoking cessation treatments.”
“Increasing the price of cigarettes reduces smoking prevalence, reduces cigarette consumption, and increases smoking cessation.”

“Comprehensive state tobacco control programs reduce smoking prevalence, increase quit attempts, and increase smoking cessation.”

“Smokefree policies reduce smoking prevalence, reduce cigarette consumption, and increase smoking cessation.”

“Mass media campaigns increase the number of calls to quitlines and increase smoking cessation.”
Contemporizing our approaches at all levels is needed to meet the shifting product landscape.

We know what works to treat tobacco use and dependence, but we need to integrate treatment into routine clinical care so that everyone has equal access.

Strategies to support and improve cessation exist at the clinical, systems, and population levels.
The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.
Tobacco Cessation at Cancer Centers: Lessons Learned

FDA, February 28, 2020

Glen D. Morgan, Ph.D.
Clinical Psychologist
Vienna, VA
The evidence is sufficient to infer a causal relationship between continued smoking among oncology patients:

- All-cause mortality is increased by 50%
- Cancer related mortality is increased by 60%
- Risk for second primary cancers is increased.
- Quitting improves the prognosis of cancer patients.

The evidence is suggestive but not sufficient to infer a causal relationship between continued smoking among oncology patients:

- The risk of recurrence is increased
- Poorer response to oncology treatment
- Increased oncology treatment-related toxicity

Comprehensive Cancer Centers – A Need to Integrate Tobacco Cessation Treatment

In a 2009 survey of NCI-designated cancer centers:¹

• Only 38% recorded smoking status, and less than half have dedicated personnel to provide tobacco cessation clinical services.

• Tobacco cessation treatment delivery was not perceived as a core health care service by the majority of Comprehensive Cancer Centers (CCCs).

NCI’s (2009) Call to Action - Tobacco Dependence Tx at Cancer Centers

Enhancing the delivery of tobacco dependence treatment at cancer centers requires:

1. Refining electronic medical records to ensure universal identification and referral of smokers
2. Overcoming barriers to providing tobacco cessation treatment
3. Achieving institutional buy-in that treating tobacco use is an expected component of “Standard of Care.”

Addressing a Core Gap in Cancer Care — The NCI Moonshot Program to Help Oncology Patients Stop Smoking

Robert T. Coyle, Ph.D., Glen D. Morgan, Ph.D., and Michael C. Fiore, M.D., M.P.H., M.B.A.

Despite making great progress in caring for people with cancer, the oncology community has often neglected to capitalize on a highly feasible, readily available, and cost-effective strategy for increasing the success of cancer treatment and rates of recovery — smoking cessation. Effective smoking-cessation treatments can double or triple a smoker’s chances of quitting successfully, and new treatment innovations that further boost quit rates continue to emerge, but such treatments are infrequently provided to patients as part of their cancer care.

Our failure to effectively address smoking in patients with cancer exacts steep costs. Evidence shows that continued smoking after a cancer diagnosis increases post-treatment mortality as well as the risk of new primary cancer and the risk of cancer recurrence, and rates of adverse side effects from cancer treatment. Conversely, quitting smoking after a cancer diagnosis is associated with longer survival and a reduced risk of new cancers. The evidence is clear: for the approximately half of cancer patients who smoke at the time of their diagnosis, a cancer diagnosis signals an important and highly feasible opportunity to improve the effectiveness of cancer treatment and avert future cancers.

Despite recommendations (e.g., from the National Comprehensive Cancer Network) that all patients with cancer be offered effective treatment to help them quit smoking, such treatment is an often-neglected element of cancer care. For example, a 2009 survey of 58 National Cancer Institute (NCI)-designated clinical and comprehensive cancer centers in the United States revealed that 27% offered no tobacco-cessation treatment services, only 62% routinely provided tobacco-education materials to patients, half reported having systems in place to identify which of their patients use tobacco, and less than half reported having a staff person dedicated to providing tobacco-cessation services or a commitment from center leadership to provide such services. Each institution has had a predictable effect on the delivery of smoking-cessation interventions. Data show that just under half of cancer care providers consistently discuss cessation medication options with their patients who smoke, and a similar proportion consistently treat their patients with cessation medications or refer them for treatment. Among people who have had cancer but continue to smoke, only about half report having received counseling or support to...
Catalysts & steps

• Cancer center meeting Dec 2009
• Cancer moonshot 2016
• Focus group – 2016
• P30 supplements 2017 – 2020
NCI Cancer Center
Cessation Initiative (P30 Supplement)

- $250,000 total award per year for two years per center
- Funded NCI Cancer Moonshot Initiative plus NCI’s Division of Cancer Control & Population Sciences
- Round 1 funded September 2017
- Round 2 funded September 2018
- Two meetings each year
Goals:

• Short-term: Enhance capacity of Cancer Centers to address tobacco cessation with cancer patients.

• Long-term: Build and implement a sustainable tobacco cessation treatment program.
Funding Timeline

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort 1</td>
<td>22 cancer centers</td>
<td>Continued (unfunded) participation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sept 2017- Sept 2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohort 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sept 2018 - Sept 2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Continued (unfunded) participation</td>
<td></td>
</tr>
</tbody>
</table>
Cancer Centers Cessation Intervention – Leadership

• NCI – Stephanie Land, Ph.D
• Coordinating Center at the University of Wisconsin:
 – Michael Fiore, M.D. & Betsy Rolland, Ph.D.
• Panel of Experts:
 – Graham Warren, M.D., Ph.D.
 – Steven Bernstein, M.D.
 – Jamie Ostroff, Ph.D.
 – Paul Cinciripini, Ph.D.
 – Anne Joseph, M.D.
 – Monica Webb-Hooper, Ph.D.
Increasing capacity

• Utilize internal & external tx resources
• Hiring new staff vs. training existing
• referring externally
•
Delivery Channels

• Person to person (physician, NP, PA, TTS)
• Group interventions
• Web-based interventions (smokefree.gov)
• Text messaging
• Quitlines
Elements of intervention programs

- Identifying smokers
- Advising cessation
- Follow-up
- Monitoring progress of individual patients and patients collectively (refer to measures slide)
Measurement/ markers of success

- Baseline smoking rates
- Reach – engagement rates
- Effectiveness
- Abstinence rates 1, 6, & 12 months
Electronic Health Record

Health system IT adaptations

- Tobacco Registry
- Smoking Status documentation
- Order sets
 - Medications
 - Referral to internal treatment resources
 - Referral to external treatment resources
Cancer Center Leadership Support

Cancer Center Directors can:

– Assist in navigating the clinical environment
– Dedicate IT resources to this effort
– Provide support and put weight behind tobacco requests
– Ensure sustainability with specific, funded commitments
Lessons/ Keys to facilitating progress

• Seeing this as part of the mission
• Support of leadership
• Identification of a champion
• Buy-in across staff
• Significant I.T. engagement
• Persistence
Resources

Video:
https://www.youtube.com/watch?time_continue=17&v=mH_Lot3PjR0
Thank you!

Glen Morgan

Glen.Morgan.PhD@gmail.com
Financial Considerations for Smoking and Cancer Treatment

Graham Warren M.D., Ph.D.
Vice Chairman for Research
Department of Radiation Oncology
Department of Cell and Molecular Pharmacology
Cancer Prevention and Control Program
Hollings Cancer Center
Medical University of South Carolina
The 2014 SGR: Outcome Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Studies</th>
<th>Associations (Significant)</th>
<th>RR Magnitude (median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Mortality</td>
<td>159</td>
<td>87% (62%)</td>
<td>Current: 1.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Former: 1.22</td>
</tr>
<tr>
<td>Overall Survival</td>
<td>62</td>
<td>77% (42%)</td>
<td></td>
</tr>
<tr>
<td>Cancer Related Mortality</td>
<td>58</td>
<td>79% (59%)</td>
<td>Current: 1.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Former: 1.03</td>
</tr>
<tr>
<td>Second Primary</td>
<td>26</td>
<td>100% (100%)</td>
<td></td>
</tr>
<tr>
<td>Recurrence</td>
<td>51</td>
<td>82% (53%)</td>
<td>Current: 1.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Former: 1.15</td>
</tr>
<tr>
<td>Response</td>
<td>16</td>
<td>72%</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>82</td>
<td>94% (80%)</td>
<td></td>
</tr>
</tbody>
</table>

Staging Progress: Where are We?

• Stage I: clear evidence an adverse effect (2014 SGR)
• Stage II: identifying if addressing tobacco will produce meaningful benefits
• Stage III: development of cessation approaches that are clinically effective and efficient
 • Innovating to determine the best approach to cessation in an ‘opt-out’ setting
• Stage IV: identifying cancer treatment approaches (existing or new) optimized to reduce first line treatment failure
Conceptualizing Cancer Treatment

Cancer Patient

First Line Cancer Treatment

Successful Cure

Death from Non-Cancer Cause

Cancer Treatment Toxicity

Recurrence

Death from Cancer
Conceptualizing **Smoking** in Cancer Treatment

Cancer Patient

First Line Cancer Treatment

Successful Cure

Cancer Treatment Toxicity

Recurrence

Death from Non-Cancer Cause

Death from Cancer

- 50% Increase
- 60% Increase
Magnitude of Smoking

• United States population: 328,000,000
 • Cancer incidence: 1.6 million
 • Reported smoking prevalence: ~15%
 • NOTE: ~30% of cancer patients who smoke misrepresent
 • Adjust to ~21% prevalence
 • US smoking cancer patient prevalence ~336,000

• Canadian population: 36,585,000
 • Canadian cancer incidence: 206,200
 • Smoking prevalence: 16.9% (adjust to 24%)
 • Canadian smoking cancer patient prevalence: ~49,500

https://www150.statcan.gc.ca/n1/pub/82-625-x/2018001/article/54974-eng.htm
Attributable Failure due to Smoking

Figure. Attributable Failure per 1000 Total Patients Due to Continued Smoking

Warren et al., JAMA Network Open, 2019
Cost of Failure due to Smoking

US Estimates (conservative): $3.4 Billion Annually
$10,678 per smoking patient

Pan-Canadian Estimates: $239 Million Annually
$5,795 per smoking patient

Warren et al., *JAMA Network Open*, 2019

Table 3. Mean Cost Associated With First-line Cancer Treatment Failure Attributed to Smoking per 1000 Total Patients With a 30% Failure Rate of First-line Cancer Treatment Among Nonsmoking Patients and 20% Smoking Prevalence

<table>
<thead>
<tr>
<th>Odds Ratio</th>
<th>Mean Individual Cost per Treatment Failure, $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 000</td>
</tr>
<tr>
<td>1.1</td>
<td>40 777</td>
</tr>
<tr>
<td>1.2</td>
<td>79 245</td>
</tr>
<tr>
<td>1.4</td>
<td>150 000</td>
</tr>
<tr>
<td>1.6</td>
<td>213 559</td>
</tr>
<tr>
<td>1.8</td>
<td>270 968</td>
</tr>
<tr>
<td>2.0</td>
<td>323 077</td>
</tr>
<tr>
<td>2.5</td>
<td>434 483</td>
</tr>
<tr>
<td>3.0</td>
<td>525 000</td>
</tr>
</tbody>
</table>
Magnitude Comparison

<table>
<thead>
<tr>
<th></th>
<th>Genome Driven Oncology1</th>
<th>“Tobacco Cessation Adjuncted Oncology”</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of cancer patients who may benefit</td>
<td>5%</td>
<td>16.9%</td>
</tr>
<tr>
<td>Cost of sequencing</td>
<td>$500 - $3,000 (est. average $1,500)</td>
<td>$0</td>
</tr>
<tr>
<td>Cost of treatment</td>
<td>$15,000 - $250,000 (est. average $80,000)</td>
<td>$200 - $1,500 ($974: intensive + V + NRT)$^2</td>
</tr>
<tr>
<td>Clinical benefit</td>
<td>54% response for 29.5 median months</td>
<td>~40% reduction in mortality</td>
</tr>
<tr>
<td>Cost per 1000 total patients</td>
<td>$4.075 million</td>
<td>$0.164 million</td>
</tr>
<tr>
<td>Cost ratio per 1000 total patients</td>
<td>~25:1</td>
<td></td>
</tr>
</tbody>
</table>

1. Marquart J et al., *JAMA Onco* 2018
2. CPAC Cost Estimates for Smoking Cessation 2017
How Can We Deal with Smoking

1. Smoking Cessation
 • 2020 SGR suggests a 45% median reduction in overall mortality with cessation

2. Identifying cancer treatments that are not affected by smoking
 • There may very well be existing treatments that are not affected by smoking
 • Surgery (theoretically) would remove the nidus of recurrence vs. RT or chemo-RT

3. Identifying cancer treatments that target the effects of smoking
 • PD-L1 based therapeutics appear to work better in patients with a smoking history (but not necessarily current smokers)
(1) Tobacco Assessment by Oncologists
(Always/Most of the time)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IASLC (n=1507)</th>
<th>ASCO (n=1197)</th>
<th>NDCC (n=887)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ask if use tobacco</td>
<td>90.2%</td>
<td>89.5%</td>
<td>90.2%</td>
</tr>
<tr>
<td>Advise to quit</td>
<td>80.6%</td>
<td>82.4%</td>
<td>83.3%</td>
</tr>
<tr>
<td>Actively treat</td>
<td>38.8%</td>
<td>38.6%</td>
<td>35.1%</td>
</tr>
</tbody>
</table>

- Predictive barriers by oncologists
 - Lack of education and experience in cessation
 - Lack of time
 - Lack of resources

Warren GW et al. J Thorac Oncol 2013
Warren GW et al. J Oncol Pract 2013
Pommerenke et al. AACR 2014 Annual Meeting
(1) Who Should Provide Support?
(NCI survey)

What provider do you prefer to provide cessation assistance?

- I prefer to treat the patient myself (1%)
- Primary Care physician (16%)
- MD/DO level provider (4%)
- Mid level provider (NP/PA) 19%
- Any other clinical staff (50%)
- Other clinical support (nurse, social work) (9%)

10% of respondents felt adequately trained
55% of respondents said train someone else in my clinic

Pommerenke et al. AACR 2014 Annual Meeting
(1) Opt-Out Screening and Treatment

All New Patients

New Patient Screen

Positive Screen for Tobacco Use

Automated Referral to Cessation Service

Accept Enrollment

Negative Screen for Tobacco Use

Established Patient Screen

Refuse Enrollment

Standard Clinical Cancer Care

Individualized Tobacco Cessation Intervention

Warren GW et al., Cancer 2014
(1) Participation at Cessation Contact

- 2765 patients referred to cessation program
- 1384 patients with at least 5 cessation contact attempts
- 1126 patients contacted by cessation service
- 1075 appropriate referrals contacted by cessation service
- 1010 receptive to cessation assistance
- 1381 receive mailing on cessation support
- 258 patients not reached within 5 attempts
- 51 inappropriate referrals
- 35 unable to participate
- 30 refused participation

- 81.3% Contact Rate
- 1.2% (16 patients) contacted cessation program
- 2.8% Refused Participation

1. Includes 12 never smokers and 39 former smokers with no tobacco use in the past 30 days
2. Includes 12 patients in end-of-life situation and 23 patients in assisted living arrangement with contact by proxy

Warren GW et al., Cancer 2014
(1) New Patient Screen Yield

<table>
<thead>
<tr>
<th>Referral Question</th>
<th>% of Total Referrals for Current Users</th>
<th>% of Total Referrals for Former Users</th>
<th>% of Total Referrals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you now smoke cigarettes everyday, some days, or not at all?</td>
<td>93.7%</td>
<td></td>
<td>83.1%</td>
</tr>
<tr>
<td>Do you currently use any other tobacco products such as cigars, pipes, chewing</td>
<td>6.3%</td>
<td></td>
<td>5.6%</td>
</tr>
<tr>
<td>tobacco, snuff, dip, SNUS, clove cigarettes, kreteks, or bidis?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>About how long has it been since you last smoked a cigarette, even a puff?</td>
<td></td>
<td>89.0%</td>
<td>10.1%</td>
</tr>
<tr>
<td>About how long has it been since you last smoked/used other tobacco products</td>
<td></td>
<td>1.4%</td>
<td>0.2%</td>
</tr>
<tr>
<td>such as cigars, cigarillos, little cigars, pipe tobacco, or used chewing tobacco,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>snuff, dip, or SNUS even once?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are you currently using any of the following methods or strategies to try to</td>
<td>2.7%</td>
<td></td>
<td>0.3%</td>
</tr>
<tr>
<td>quit?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are you interested in stopping tobacco use or speaking with our tobacco</td>
<td>6.8%</td>
<td></td>
<td>0.8%</td>
</tr>
<tr>
<td>cessation specialist?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

98.8% of patients captured with 3 questions

Extending assessment to every month delayed referral in only 3 of 428 cessation referrals (0.7%)

Warren GW et al., Cancer 2014
Opt-Out Cessation and Mortality

<table>
<thead>
<tr>
<th>Continuous Variables</th>
<th>N</th>
<th>Mean</th>
<th>Hazard Ratio</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnosis (years)</td>
<td>224</td>
<td>61.9</td>
<td>1.04</td>
<td>1.02–1.06</td>
<td>0.001</td>
</tr>
<tr>
<td>Pack-years</td>
<td>224</td>
<td>59.7</td>
<td>1.00</td>
<td>0.99–1.01</td>
<td>0.495</td>
</tr>
<tr>
<td>Days between diagnosis and last contact</td>
<td>224</td>
<td>100.9</td>
<td>0.999</td>
<td>0.998–1.001</td>
<td>0.227</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Categorical Variables</th>
<th>N</th>
<th>%</th>
<th>Hazard Ratio</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>134</td>
<td>59.8</td>
<td>1.00</td>
<td>Ref.</td>
<td>0.051</td>
</tr>
<tr>
<td>Male</td>
<td>90</td>
<td>40.2</td>
<td>1.45</td>
<td>1.01–2.14</td>
<td></td>
</tr>
<tr>
<td>Clinical stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage I/II</td>
<td>81</td>
<td>36.2</td>
<td>1.00</td>
<td>Ref.</td>
<td><0.001†</td>
</tr>
<tr>
<td>Stage III</td>
<td>65</td>
<td>29.0</td>
<td>2.53</td>
<td>1.39–4.61</td>
<td></td>
</tr>
<tr>
<td>Stage IV</td>
<td>78</td>
<td>34.8</td>
<td>8.72</td>
<td>4.93–15.40</td>
<td></td>
</tr>
<tr>
<td>ECOG status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>127</td>
<td>56.7</td>
<td>1.00</td>
<td>Ref.</td>
<td>0.265</td>
</tr>
<tr>
<td>≥1</td>
<td>97</td>
<td>43.3</td>
<td>1.26</td>
<td>0.84–1.89</td>
<td></td>
</tr>
<tr>
<td>Tumor histology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSCLC</td>
<td>197</td>
<td>87.9</td>
<td>1.00</td>
<td>Ref.</td>
<td>0.626</td>
</tr>
<tr>
<td>Other lung cancer</td>
<td>27</td>
<td>12.1</td>
<td>0.87</td>
<td>0.50–1.52</td>
<td></td>
</tr>
<tr>
<td>Quit status at referral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quit</td>
<td>48</td>
<td>21.4</td>
<td>1.00</td>
<td>Ref.</td>
<td>0.393</td>
</tr>
<tr>
<td>Current</td>
<td>176</td>
<td>78.6</td>
<td>0.80</td>
<td>0.48–1.34</td>
<td></td>
</tr>
<tr>
<td>Quit status at last contact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quit</td>
<td>95</td>
<td>42.4</td>
<td>1.00</td>
<td>Ref.</td>
<td>0.012†</td>
</tr>
<tr>
<td>Current</td>
<td>129</td>
<td>57.6</td>
<td>1.79</td>
<td>1.14–2.82</td>
<td></td>
</tr>
</tbody>
</table>

115 of 224 patients (51.3%) were deceased by the end of the follow-up period. The model is adjusted for all variables shown in this table based upon a Cox proportional hazards model. *N = 224 of 250 due to 22 records missing clinical stage, two missing pack-years, and two missing both clinical stage and pack-years. Bold indicates statistically significant at p < 0.05. CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; NSCLC, non–small-cell lung cancer.
Addressing a Core Gap in Cancer Care — The NCI Moonshot Program to Help Oncology Patients Stop Smoking

Robert T. Croyle, Ph.D., Glen D. Morgan, Ph.D., and Michael C. Fiore, M.D., M.P.H., M.B.A.

NCI-Designated Cancer Centers Selected as Part of the Cancer Center Cessation Initiative (C3I).

Croyle et al. NEJM 2019
Pan-Canadian Vision Statement

“Our vision is that every patient with cancer across Canada receives support to quit smoking for the best treatment and quality of life.”
(2) Assessing Tobacco in Coop. Groups

Current Cigarette Use (21.9%)
Current Other Tobacco Use (12.2%)
Former Cigarette Use (21.3%)
Former Other Tobacco Use (12.2%)
Secondhand Smoke (2.6%)
Any Tobacco Assessment at Follow Up (4.5%)

Any Assessment of Tobacco (29%)
No Assessment of Tobacco (71%)

(2) NCI/AACR Structured Questions

Research Priorities, Measures, and Recommendations for Assessment of Tobacco Use in Clinical Cancer Research

Stephanie R. Land¹, Benjamin A. Toll², Carol M. Moinpour³, Sandra A. Mitchell⁴, Jamie S. Ostroff⁵, Dorothy K. Hatsukami⁶, Sonia A. Duffy⁷, Ellen R. Gritz⁸, Nancy A. Rigotti⁹, Thomas H. Brandon⁹, Sheila A. Prindiville¹⁰, Linda P. Sarna¹¹, Robert A. Schnoll¹², Roy S. Herbst¹³, Paul M. Cinciripini¹⁴, Scott J. Leischow¹⁴, Carolyn M. Dresler¹⁵, Michael C. Fiore¹⁶, and Graham W. Warren¹²,¹⁸

Cognitive Testing of Tobacco Use Items for Administration to Patients with Cancer and Cancer Survivors in Clinical Research

Stephanie R. Land, PhD¹,²; Graham W. Warren, MD, PhD³,⁴; Jennifer L. Crafts, PhD⁴; Dorothy K. Hatsukami, PhD⁶; Jamie S. Ostroff, PhD⁵; Gordon B. Willis, PhD³; Veronica Y. Chollette, RN, MS²; Sandra A. Mitchell, PhD, CRNP, AOCN²; Jasmine N. M. Folz, MA⁶; James L. Gulley, MD, PhD⁸; Eva Szabo, MD⁹; Thomas H. Brandon, PhD¹⁰; Sonia A. Duffy, PhD, RN¹¹; and Benjamin A. Toll, PhD¹²

(2) Core Items

1. Have you smoked at least 100 cigarettes (5 packs=100 cigarettes) in your entire life?
 - Yes
 - No
 - Don’t know/Not sure

4. How many total years have you smoked (or did you smoke) cigarettes? Do not count any time you may have stayed off cigarettes.
 ______ Years If you smoked less than one year, write “1.”

5. On average when you have smoked, about how many cigarettes do you (or did you) smoke a day?
 A pack usually has 20 cigarettes in it.
 ______ Number of cigarettes per day

6. How long has it been since you last smoked a cigarette (even one or two puffs)?

First check which one of the following choices applies to you. Then, if applicable, write a number on the line for how many days, weeks, months, or years it has been since your last cigarette.

- I smoked a cigarette today (at least one puff).
- 1-7 days. ➔ Number of days since last cigarette: ______
- Less than 1 month. ➔ Number of weeks since last cigarette: ______
- Less than 1 year. ➔ Number of months since last cigarette: ______
- More than 1 year. ➔ Number of years since last cigarette: ______
- Don’t know/Don’t remember
Implementing Cessation into Practice

- **The 5 A’s Model**
 - Ask
 - Advise
 - Assess
 - Assist
 - Arrange

- Implementing cessation into clinical care should consider new and follow-up approaches.

Warren et al. DeVita *Principles and Practice of Oncology* 11th ed. 2018
(3) Targeted Strategies…

• Have you considered evaluating if targeted therapeutics could be used to treat patients with a smoking history or patients who smoke at the time of diagnosis?
(3) Targeted Strategies…

• Have you considered evaluating if targeted therapeutics could be used to treat patients with a smoking history or patients who smoke at the time of diagnosis?

• Have you considered if we figured this out, then maybe this is a way we could also improve second-line treatment for resistant cancers?
The Imperative of Addressing Cancer Drug Costs and Value

- "Promoting Value, Affordability, and Innovation in Cancer Drug Treatment" (President’s Cancer Panel)

1. Value based use
2. Communication
3. Minimize effects of drugs on financial toxicity
4. Stimulate competition
5. Adequate resources for FDA
6. Research
Maximizing Value

- Smoking is an unequivocal effect modifier
- The cost of cessation ($200-$2000) is far less than the cost of cancer drugs ($25,000-$400,000)
- Current smoking affects over 300,000 cancer patients in the US every year
- Patients should be informed
- Providers should be informed
- FDA should be given resources
- Priority should be placed on identifying EVIDENCE-BASED CARE
- This can start by including brief structured smoking assessments into ALL clinical trials
Conclusions?

• Smoking after a cancer diagnosis is a broad EFFECT MODIFIER that affects more than 300,000 patients annually
 – STOP viewing smoking as a behavioral trait
 – Clinical trials MUST include tobacco as an effect modifier
 – Are we really going to continue to spend this much on ignoring a proven factor associated with recurrence and mortality

• Optimal treatment strategies likely exist for cancer patients who smoke at the time of diagnosis
 – Delay?
 – Surgery vs. RT/Chemo-RT?
 – Optimal systemic agents?

• Coherent prioritization to include funding and review
Financial Toxicity in Cancer Treatment in America
Smokers who are diagnosed with cancer often have the LEAST financial resources to pay for their treatment or to engage in smoking cessation activities.
Financial Toxicity

“A new name for a growing problem”
Cancer’s Financial and Access Challenges

Just as many Americans are worried about cancer’s financial impact as about dying of cancer.

- 57% of caregivers say they or a loved one have taken at least one onerous step to pay for cancer care including:
 - 35% dipped into savings account
 - 23% worked extra hours
 - 14% postponed retirement
 - 13% took on an additional job

- 43% of cancer patients experienced barriers to accessing the best possible care due to health insurance coverage

ASCO 2018 National Cancer Opinion Survey
What is Financial Toxicity?
Financial Toxicity:

Problems a patient has related to the cost of medical care. Cancer patients are more likely to have financial toxicity than people without cancer.

-National Cancer Institute

“Even with health insurance, the high costs of cancer care are leaving some vulnerable American families adrift in debt. [...] Out-of-pocket costs can have real effects on quality of life and quality of care.”

-Chino, JAMA Oncology, 2018
Why does Financial Toxicity Matter?

Decreased:
- Quality of Life
- Satisfaction with Care
- Quality of Care
Patients with “a lot” of financial problems were much less likely to rate their QOL as good (OR 0.24)

95% CI, 0.14-0.40
Decreased Satisfaction with Care

High financial burden decreases:

- General satisfaction with health care
 (coefficient: -0.29; lower to upper bound: -0.57 to -0.01; p=0.04)

- Satisfaction with technical quality of care
 (coefficient: -0.26; lower to upper bound: -0.48 to -0.03; p=0.03)
Decreased Quality of Care

Medication nonadherence = 27%
This included:
• 22% who didn’t fill Rx due to cost
• 14% who skipped doses to make meds last longer
• 5% who skipped, took less, or didn’t fill their chemotherapy prescriptions
Why does Financial Toxicity Matter?

Increased:
- Personal/Family Burden
- Risk of Bankruptcy
- Risk of Mortality
Increased Personal/Family Burden

- At least one sacrifice: 67%
- Borrowed money: 25%
- Used savings: 52%
- Spent less on basics like food or clothing: 30%
- Spent less on leisure activities: 48%

Chino, JOP, 2018
Risk of Homelessness

1 in 20* Black or Latina women with early stage breast cancer lost their home due to the financial impact of their cancer treatment

*4.7% of black, 6.0% of Latinas
Increased Risk of Bankruptcy

In a study of 197,840 citizens, 4,408 had declared bankruptcy

2.65x
Risk of bankruptcy with Cancer Diagnosis

Ramsey, Health Affairs 2013
Increased Risk of Death

In a study of 7,570 matched patients, bankruptcy was associated with

79%

increased mortality risk

HR 1.79 (1.64-1.96)
Where do we go from here?
Solutions exist within systemic, interpersonal, and individual frameworks.
Policy Guidelines

“A broad set of stakeholders must contribute to efforts to align cancer drug prices with their value, ensure affordable access to cancer drugs for all patients, and promote future innovation in cancer drug development.”

President’s Cancer Panel, 2018
Low-dose nivolumab can be effective in non-small cell lung cancer: alternative option for financial toxicity

Shin Hye Yoo,1 Bhumsuk Keam,1,2 Miso Kim,1 Se Hyun Kim,3 Yu Jung Kim,3 Tae Min Kim,1,2 Dong-Wan Kim,1,2 Jong Seok Lee,3 Dae Seog Heo1,2
National Health Care Initiatives: Affordable Care Act
Affordable Care Act and Smoking Cessation

Tobacco cessation (individual counseling, group counseling, medications) must be provided at no cost as an “essential health benefit” under the ACA. Not all evidence-based cessation treatments are covered in all states.

Prior research has shown that NRT/counseling with no cost sharing increased quit rates by 5 percentage points over 12 months (13% -> 18%).

Schauffler, Tob Control, 2001
National Health Care Initiatives: ASCO Choosing Wisely

10 Cancer Tests and Treatments Routinely Performed Despite Lack of Evidence

Avoid using PET or PET-CT scanning as part of routine follow-up care to monitor for a cancer recurrence in asymptomatic patients who have finished initial treatment to eliminate the cancer unless there is high-level evidence that such imaging will change the outcome.

- PET and PET-CT are used to diagnose, stage and monitor how well treatment is working. Available evidence from clinical studies suggests that using these tests to monitor for recurrence does not improve outcomes and therefore generally is not recommended for this purpose.
- False positive tests can lead to unnecessary and invasive procedures, overtreatment, unnecessary radiation exposure and incorrect diagnoses.
- Until high level evidence demonstrates that routine surveillance with PET or PET-CT scans helps prolong life or promote well-being after treatment for a specific type of cancer, this practice should not be done.

Don’t use a targeted therapy intended for use against a specific genetic aberration unless a patient’s tumor cells have a specific biomarker that predicts an effective response to the targeted therapy.

- Unlike chemotherapy, targeted therapy can significantly benefit people with cancer because it can target specific gene products, i.e., proteins that cancer cells use to grow and spread, while causing little or no harm to healthy cells. Patients who are most likely to benefit from targeted therapy are those who have a specific biomarker in their tumor cells that indicates the presence or absence of a specific gene alteration that makes the tumor cells susceptible to the targeted agent.
- Compared to chemotherapy, the cost of targeted therapy is generally higher, as these treatments are newer, more expensive to produce and under patent protection. In addition, like all anti-cancer therapies, there are risks to using targeted agents when there is no evidence to support their use because of the potential for serious side effects or reduced efficacy compared with other treatment options.
1° Prevention:
Prevent disease or injury before it ever occurs

2° Prevention:
Reduce impact by detecting and treating disease or injury as soon as possible

3° Prevention:
Soften the impact of an ongoing illness or injury that has lasting effects
1° Prevention:
Prevent Financial Toxicity from Forming

Patient Level:
- Education
- Optimize Insurance (Financial Navigators)
- Improve Access (maintain work, health insurance)

Provider Level:
- Education
- Value Based Care (ASCO Value Framework)
- Cost aware prescribing patterns
2° Prevention: Screen for Financial Toxicity Early and Often

National Comprehensive Cancer Network (NCCN) Problem List

- Practical Problems
 - Child care
 - Housing
 - Insurance/financial
 - Transportation
 - Work/school
The **COmprehensive Score for Financial Toxicity (COST)**

http://www.facit.org/facitorg/questionnaires

Below is a list of statements that other people with your illness have said are important. Please mark your response as it applies to you when considering the past 7 days.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Not at all</th>
<th>A little bit</th>
<th>Somewhat</th>
<th>Quite a bit</th>
<th>Very much</th>
</tr>
</thead>
<tbody>
<tr>
<td>I know that I have enough money in savings, retirement, or assets to cover the costs of my treatment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My out-of-pocket medical expenses are more than I thought they would be.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I worry about the financial problems I will have in the future as a result of my illness or treatment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel I have no choice about the amount of money I spend on care.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am frustrated that I cannot work or contribute as much as I usually do.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am satisfied with my current financial situation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am able to meet my monthly expenses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel financially stressed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am concerned about losing my job and income, including work at home.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My cancer or treatment has reduced my satisfaction with my present financial situation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel in control of my financial situation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simply asking patients if they have difficulty paying for their medical care is an important means for oncologists to ally themselves with patients. Talking about money is never easy. But when doctors are reluctant to talk about medical costs, a patient's health can be undermined.
50-80% cancer patients desire a cost conversation with oncologist.

But only 19% actually talked to their doctor.

And only 28% talked to ANY health care professional.

Kelly, JOP, 2015
Over 50% of those who discussed their costs reduced them.
How did cost conversations help?

- Decreased frequency of MD visits: 6%
- Changed tests or decreased frequency: 13%
- Switched to less expensive meds: 19%
- MD appealed to insurance: 25%
- Referred to financial assistance: 53%

Vast majority of costs were reduced without changing cancer treatments (not compromising care)

1° Prevention:
Education, optimized insurance, value based care

2° Prevention:
Diagnose early by screening often

3° Prevention:
Normalize cost conversations, refer for assistance when appropriate
Next step: Flip the pyramid

1° Prevention:
Education, optimized insurance, value based care

2° Prevention:
Diagnose early by screening often

3° Prevention:
Normalize cost conversations, refer for assistance when appropriate
Mitigating Financial Toxicity is Possible

... but Financial Toxicity is Growing in the US

... and Cancer Outcomes are at Risk
Thank you.

@fumikochino #OCETobaccoUse @AACR @IASLC @FDAOncology
Smoking Also Has Serious Financial Repercussions

Average cost per smoker associated with smoking one pack of cigarettes per day*

<table>
<thead>
<tr>
<th>State</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecticut</td>
<td>$55,973</td>
</tr>
<tr>
<td>New York</td>
<td>$55,911</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>$55,167</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>$54,162</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>$52,588</td>
</tr>
<tr>
<td>Alaska</td>
<td>$49,018</td>
</tr>
<tr>
<td>Hawaii</td>
<td>$48,867</td>
</tr>
<tr>
<td>Minnesota</td>
<td>$48,848</td>
</tr>
<tr>
<td>Vermont</td>
<td>$47,245</td>
</tr>
<tr>
<td>Washington</td>
<td>$45,523</td>
</tr>
<tr>
<td>New Jersey</td>
<td>$43,566</td>
</tr>
</tbody>
</table>

* 2019. Includes cost of a pack per day, health care expenditures, income losses and other costs.

Source: WalletHub

Smoking a pack a day in Connecticut will cost a smoker an average of $2.8 million in his or her lifetime.
SESSION V:
Future Directions & Next Steps
Session Moderator: Stephanie Land, PhD

Speakers:
Srikumar Chellappan, PhD
Paul A. Bunn, Jr., MD, FASCO
Shakun Malik, MD
Nicotine, Smoking and Response to Therapy: Future Directions

Srikumar Chellappan, Ph.D.
Moffitt Distinguished Scholar
Chair, Dept. of Tumor Biology
H. Lee Moffitt Cancer Center and Research Institute
Tampa, FL 33612.
A. What we know:

- Patients who continue to smoke after cancer diagnosis have a worse outcome than non-smokers
- Smoking and exposure to nicotine confers resistance to chemotherapeutic agents

Nicotine can inhibit apoptosis induced by chemotherapeutic drugs in cultured cells: Dasgupta et al., PNAS, 2006.
Exposure to nicotine promotes PDAC growth and negates the effect of chemotherapy.
Nicotine and E-Cigarette extracts promote self-renewal of cancer stem-like cells
Smoking induces multiple proteins involved in drug metabolism

- Components of cigarette smoke induce drug metabolizing enzymes like cytochrome P450 and UDP-glucuronyltransferase

(O’Malley et al., JTO 9:917, 2014.)
Tobacco smoke components facilitate the faster clearance of anti-cancer drugs

• Several chemotherapy drugs and targeted agents are metabolized and cleared through the action of these enzymes.
• Smoking can also affect the pharmacokinetics and pharmacodynamics of drugs, affecting their efficacy.
• Smokers receiving irinotecan or erlotinib showed rapid clearance of the drugs and required higher doses to obtain optimal systemic exposure.
• Thus, smoking status and exposure to tobacco smoke (and perhaps E-cigarettes) might affect the effective dose of the drugs in the body.
Tobacco smoke enhances the side effects of cancer treatment

• There is a statistically significant correlation between smoking and treatment-related toxicities (Peppone et al., The Oncologist, 2011).

• One study on 947 patients showed that smokers had a markedly higher symptom burden than non-smokers. Smokers reported a higher symptom burden during six-month follow up as well.

• Quitting smoking before treatment reduced the symptom burden of the patients.

• Thus capturing smoking status/history would reveal the extent of side effects that are solely due to the drugs and if they can be eliminated by smoking cessation.
Nicotine and E-Cigarette contents enhance the levels of γ-H2AX foci in NSCLC organoids
Tobacco smoke affects the response to radiotherapy

• It was reported more than 25 years ago that H&N cancer patients who continue to smoke while undergoing radiation therapy regimens had markedly lower rates of response (Browman et al., NEJM, 1993).

• Similarly, H&N cancer patients showed a significantly lower overall five-year survival rate compared to non-smokers who underwent radiation therapy.

• Two year survival rates of smokers undergoing radiation or chemo-radiation were lower than non-smokers, especially those with Stage I/II NSCLC.

• Not sufficient information on how NRT or E-cigarettes affect response to radiotherapy.
Smoking and response to immunotherapy

• A significant amount of information on how smoking affects the immune response and the tumor immune microenvironment

• Tobacco smoke components significantly reduce innate immunity. Smoking reduces NK cell activity and production of IFNg, alters the ratio of T helper cells and Tregs, impairs phagocytic functions etc.

• Adaptive immune cells affected by smoking mainly include T helper cells (Th1/Th2/Th17), CD4+CD25+ regulatory T cells, CD8+ T cells, B cells and memory T/B lymphocytes while innate immune cells impacted by smoking are mostly DCs, macrophages and NK cells.
Immune cells affected by tobacco smoke

(Qiu et al., Oncotarget 8:268, 2017)
Smoking and response to immune checkpoint inhibitors

- Tumors with higher mutational burden generally respond better to immune checkpoint inhibitors.

- Tumors in smokers have higher mutational burden; but this is counterbalanced by the immunosuppressive effects of tobacco smoke.

- Further, nicotine and other tobacco smoke components have been found to induce the expression of PD-L1 and similar immunosuppressive ligands to abrogate anti-tumor immunity.

- Substantially different results were obtained in different clinical trials as to how smoking status affects the response to immunotherapy.

- In certain studies, the smoking signature for gene expression predicted higher response than smoking history itself.
B. Unresolved Questions:

• It is not clear how smoking status and exposure to tobacco smoke affects the PK/PD and thus the effective systemic exposure of drugs. This would be vital in evaluating the efficacy of novel small-molecule inhibitors.

• It would be vital to assess how smoking status affects overall symptom burden, and side effects of new drugs.

• Smoking status is a confounding factor in the response to immunotherapy; a significant amount of additional data would be needed to assess how smoking affects immune checkpoint therapy.
C. Conclusion/Recommendation

• Capturing smoking history and smoking status would greatly enhance the ability to assess the efficacy of novel therapeutic strategies more accurately.

• Assessing smoking status would also enable the clinicians to encourage smoking cessation efforts, which would benefit the patients.

• Capturing the use of electronic cigarettes would also generate valuable information on how these newer nicotine delivery systems affect therapeutic agents.
Questions?
Future Directions in Tobacco Use Assessment in Oncology Therapeutic Trials

Paul A. Bunn, Jr, MD, Distinguished and Dudley Professor, Univ. of Colorado Cancer Center, Aurora, CO 80045
Health Benefits of Quitting Smoking

Quitting Smoking Saves Lives

Tobacco smoke contains a deadly mix of more than 7,000 chemicals; hundreds are harmful, and about 70 cause cancer. Extensive research has proven that smoking harms nearly every organ of the body, causes many diseases, and reduces health overall.

The 1990 Surgeon General's report was the first report to review the scientific evidence on the health benefits of quitting smoking. The report was clear—quitting smoking has major and immediate health benefits for men and women of all ages.

The current report expands on the findings of the 1990 report, reaching several important conclusions about the health benefits of quitting smoking, including:

- Quitting smoking reduces the risk of premature death, improves health, and enhances quality of life. Quitting can add as much as 10 years to life expectancy.
- Quitting smoking lowers the risk for many adverse health effects, including poor reproductive health outcomes, cardiovascular diseases, COPD, and 12 types of cancer.

QUITTING SMOKING LOWERS THE RISK for many adverse health effects, including reproductive health outcomes, cardiovascular diseases, COPD, and 12 types of cancer.

- Quitting smoking is also beneficial for people who have already been diagnosed with coronary heart disease or COPD.
- Quitting smoking reduces the costs of smoking for people who smoke, healthcare systems, and society.
- While quitting earlier in life yields greater health benefits, quitting smoking is beneficial to health at any age. Even people who have smoked for many years or have smoked heavily will benefit from quitting.

But does quitting at the institution of therapy affect the therapeutic outcome of cancer therapy including surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy?
10 Potential Reasons collect continued Smoking status on lung cancer trials*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Quitting may improve Cancer Survival and Lower Recurrence</td>
</tr>
<tr>
<td>2</td>
<td>Quitting may lower the Risk of Death From Other Causes</td>
</tr>
<tr>
<td>3</td>
<td>Quitting may lower the Risk of Surgical Complications</td>
</tr>
<tr>
<td>4</td>
<td>Quitting may Lessen Complications and Makes Radiation Therapy Work Better</td>
</tr>
<tr>
<td>5</td>
<td>Smoking Can Decrease the Effect of Chemotherapy and Raise Complications</td>
</tr>
<tr>
<td>6</td>
<td>Smoking may lower the Effect of Targeted Therapies</td>
</tr>
<tr>
<td>7</td>
<td>Quitting may lower the Risk of a Second Cancer</td>
</tr>
<tr>
<td>8</td>
<td>Quitting Smoking Improves Quality of Life</td>
</tr>
<tr>
<td>9</td>
<td>Quitting Lowers Risk for Family and Friends</td>
</tr>
<tr>
<td>11</td>
<td>Quitting may improve the effect of immunotherapy</td>
</tr>
</tbody>
</table>

But the only way to prove these reasons to quit are scientifically based is to require smoking status collection before and after institution of therapy
1. Tobacco Use Must be Assessed in Advanced Stage Therapeutic Trials before and after institution of therapy.
 Should smoking status be a stratification factor?
2. Tobacco Use Must be Assessed in Locally Advanced Therapeutic Trials before and after institution of therapy.
 Should smoking status be a stratification factor?
3. Tobacco Use Must be assessed in Early stage trials before and after institution of therapy.
 Should smoking status be a stratification factor?
4. In prevention trials in patients at high risk for lung cancer is risk for adenocarcinoma different from squamous carcinoma? Does smoking cessation affect outcome? Should cessation be a stratification factor?
5. Should tobacco cessation programs be a mandatory part of all trials?
Effects of continued smoking on survival after lung cancer diagnosis

Smoking cessation and survival in lung, upper aero-digestive tract and bladder cancer: cohort study.

Koshiaris C¹, Aveyard P¹, Oke J¹, Ryan R², Szatkowski Ł³, Stevens R¹, Farley A²

Tammemagi CM¹, Neslund-Dudas C, Simoff M, Kvale P

Tobacco Cessation appers to improve survival in advanced stages but data are too scarce to prove this.
Nicotene decreases Effectiveness of doxorubicin
Does continued smoking affect immunotherapy response?

It appears that current smokers have higher PD-L1 expression and higher TMB than non-smokers and that they have higher objective response rates to checkpoint inhibitors. While there is insufficient evidence to draw firm conclusions, it appears that smokers who quit do better on checkpoint inhibitors than continuing smokers.

Thus, it is critical to collect this information in clinical trials and do multivariate analyses to determine if these smoking effects are independent of other variables.

PACIFIC: Phase III, Randomized, Double-blind, Placebo-controlled, Multicenter, International Study in unresectable stage III NSCLC

- Patients with stage III, locally advanced, unresectable NSCLC who have not progressed following definitive platinum-based cCRT (≥2 cycles)
- 18 years or older
- WHO PS score 0 or 1
- Estimated life expectancy of ≥12 weeks
- Archived tissue was collected

All-comers population

Durvalumab
- 10 mg/kg q2w for up to 12 months
- N=476

Placebo
- 10 mg/kg q2w for up to 12 months
- N=237

2:1 randomization, stratified by age, sex, and smoking history
N=713

Co-primary endpoints
- PFS by BICR using RECIST v1.1*
- OS

Key secondary endpoints
- ORR (per BICR)
- DoR (per BICR)
- Safety and tolerability
- PROs

*Defined as the time from randomization (which occurred up to 6 weeks post-cCRT) to the first documented event of tumor progression or death in the absence of progression.

ClinicalTrials.gov number: NCT02125461
BICR, blinded independent central review; cCRT, concurrent chemoradiation therapy; DoR, duration of response; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PROs, patient-reported outcomes; PS, performance status; q2w, every 2 weeks; RECIST, Response Evaluation Criteria in Solid Tumors; WHO, World Health Organization
Median duration of follow-up for OS was 25.2 months (range 0.2–43.1) adjusted for interim analysis.

Probability of Overall Survival

<table>
<thead>
<tr>
<th>Time from Randomization (months)</th>
<th>Durvalumab</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. at Risk</td>
<td>476</td>
<td>237</td>
</tr>
<tr>
<td>0</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>3</td>
<td>464</td>
<td>220</td>
</tr>
<tr>
<td>6</td>
<td>431</td>
<td>198</td>
</tr>
<tr>
<td>9</td>
<td>415</td>
<td>178</td>
</tr>
<tr>
<td>12</td>
<td>385</td>
<td>170</td>
</tr>
<tr>
<td>15</td>
<td>364</td>
<td>155</td>
</tr>
<tr>
<td>18</td>
<td>343</td>
<td>141</td>
</tr>
<tr>
<td>21</td>
<td>319</td>
<td>130</td>
</tr>
<tr>
<td>24</td>
<td>274</td>
<td>117</td>
</tr>
<tr>
<td>27</td>
<td>210</td>
<td>78</td>
</tr>
<tr>
<td>30</td>
<td>115</td>
<td>42</td>
</tr>
<tr>
<td>33</td>
<td>57</td>
<td>21</td>
</tr>
<tr>
<td>36</td>
<td>57</td>
<td>9</td>
</tr>
<tr>
<td>39</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>42</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

No. of events / No. of patients (%)

<table>
<thead>
<tr>
<th></th>
<th>Durvalumab</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median OS</td>
<td>NR (34.7–NR)</td>
<td>28.7 (22.9–NR)</td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durvalumab</td>
<td>183/476 (38.4)</td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>116/237 (48.9)</td>
<td></td>
</tr>
</tbody>
</table>

OS HR = 0.68

99.73% CI, 0.469–0.997†

P=0.00251
Both smokers and non-smokers benefitted from the durvalumab. While the benefit was greater in the never-smokers, and the survival differences were greatest in this subgroup, there are no data on whether smokers who quit had a better outcome than those who continued to smoke.
Longitudinal study to assess impact of smoking at diagnosis and quitting on 1-year survival for people with non-small cell lung cancer

Effects of continued smoking on survival after early stage lung cancer diagnosis

Kaplan-Meier survival estimates by 3 month smoking status

Days survived

Days survived

0 100 200 300 400

Continued to smoke Quit since diagnosis

0.00 0.25 0.50 0.75 1.00

Meta-analyses of Adjuvant CT and Neoadjuvant CT

Platinum doublet chemotherapy has small but significant improvement in survival in both the adjuvant and neoadjuvant settings but there are no data on whether smoking cessation influences outcome.

LACE: Pooled Adjuvant Data Overall Survival

NSCLC Neoadjuvant Collaborative Group meta-analysis

Lancet 2014;303:1561-71
Neoadjuvant I/O or I/O + CT Summary

<table>
<thead>
<tr>
<th>Rx</th>
<th>N</th>
<th>mPR</th>
<th>pCR</th>
<th>ORR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivo</td>
<td>21</td>
<td>9 (43%)</td>
<td>NR</td>
<td>9.5%</td>
</tr>
<tr>
<td>Nivo or Nivo+Ipi</td>
<td>44</td>
<td>11/41 (25%)</td>
<td>8 (18%)</td>
<td>9 (20)</td>
</tr>
<tr>
<td>Atezo (LCMC3)</td>
<td>82</td>
<td>15 (18%)</td>
<td>4 (5%)</td>
<td>6 (7%)</td>
</tr>
<tr>
<td>Sintilimab</td>
<td>22</td>
<td>10 (45%)</td>
<td>3 (14%)</td>
<td>NR</td>
</tr>
<tr>
<td>Total I/O alone</td>
<td>169</td>
<td>45 (27%)</td>
<td>15/148 (10%)</td>
<td>24/147 (16%)</td>
</tr>
<tr>
<td>Nivo + CT</td>
<td>30</td>
<td>24 (80%)</td>
<td>18 (60%)</td>
<td>NR</td>
</tr>
<tr>
<td>Atezo + CT</td>
<td>14</td>
<td>7 (50%)</td>
<td>3 (21%)</td>
<td>8 (57%)</td>
</tr>
<tr>
<td>Total I/O + CT</td>
<td>44</td>
<td>31 (70%)</td>
<td>21 (48%)</td>
<td>8/14 (57%)</td>
</tr>
</tbody>
</table>

It appears that checkpoint inhibitors alone and with chemotherapy have higher mPR rates compared to chemotherapy alone, but there are no data on whether smoking status or smoking cessation influence outcomes.

NR=not reported
Ongoing Early Stage Randomized Immunotherapy Trials

<table>
<thead>
<tr>
<th>Randomized Neoadjuvant Immunotherapy Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial</td>
</tr>
<tr>
<td>Checkmate 816</td>
</tr>
<tr>
<td>ImPower 030</td>
</tr>
<tr>
<td>Keynote 671</td>
</tr>
<tr>
<td>Canopy N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adjuvant Immunotherapy Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial</td>
</tr>
<tr>
<td>Pearls</td>
</tr>
<tr>
<td>BR31</td>
</tr>
<tr>
<td>IMPOWER 010</td>
</tr>
<tr>
<td>ANVIL</td>
</tr>
<tr>
<td>Canopy A</td>
</tr>
</tbody>
</table>

None of the trials stratify by smoking status nor track smoking cessation in smokers.
Prior Task Force
Recommended Timing of Assessment

- Minimal: registration and end of protocol therapy
- Recommended:
 - Before and after cancer surgery
 - Day 1 of each chemotherapy cycle
 - Beginning and end of radiation therapy
 - Beginning and end of other systemic therapy
 - 6-12 months after the end of cancer therapy

Or monthly
Proposal

- All Ongoing and Proposed therapeutic clinical trials in lung cancer include or be amended to include collection of smoking status before and after institution of therapy. Data on time of cessation should be included.
- Whether a stratification for smoking status before therapy should be included requires consideration.
- All of these trials should consider a smoking cessation program.
Conclusion Tobacco smoking patients with NSCLC generally have a higher PD-L1 tumour proportion score and experience a higher response rate in immunotherapy than non-smokers. There is little evidence on the effect of smoking during immunotherapy, but one study indicates better outcome for former smokers than for the current ones. Further studies are necessary to elucidate the negative effects of smoking during immunotherapy.
It appears that current smokers have higher PD-L1 expression and higher TMB than non-smokers and that they have higher objective response response rates to checkpoint inhibitors. While there is insufficient evidence to draw firm conclusions, it appears that smokers who quit do better on checkpoint inhibitors than continuing smokers.

Thus, it is critical to collect this information in clinical trials and do multivariate analyses to determine if these smoking effects are independent of other variables.
<table>
<thead>
<tr>
<th>N (ITT/Evaluable)</th>
<th>cStage</th>
<th>R0</th>
<th>Morbidity/ Mortality</th>
<th>MPR/PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>46/41 (89%)</td>
<td>T3/4N1: 11%</td>
<td>100%</td>
<td>29%/0%</td>
<td>10/46 (22%) MPR</td>
</tr>
<tr>
<td></td>
<td>N2: 89%</td>
<td></td>
<td></td>
<td>24/46 (52%) PCR</td>
</tr>
</tbody>
</table>

Efficacy NADIM

PFS survival in ITT population
- PFS at 6 months: 0.96 (95%CI: 0.84; 0.99)
- PFS at 12 months: 0.96 (95%CI: 0.84; 0.99)
- PFS at 18 months: 0.81 (95%CI: 0.61; 0.91)

Overall survival in ITT population
- Overall Survival at 12 months: 0.98 (95%CI: 0.85; 0.99)
- Overall Survival at 18 months: 0.91 (95%CI: 0.73; 0.97)

Pass, Harvey, NYU Langone Medical Center, USA
Future Directions & Next Steps: Perspective from NCI’s Cancer Therapy Evaluation Program

Shakun Malik, MD
Head, Thoracic and Head & Neck Cancer Therapeutics
Cancer Therapeutics Evaluation Program (CTEP)
National cancer Institute, NIH

February 28, 2020
- People who smoke develop cancer
- Cancer patients who smoke have worse health outcomes
 - Poor response to treatment,
 - higher risk of recurrence,
 - increased toxicity.
Smoking cessation interventions should be a part of standard oncologic treatment.

All patients should be screened for tobacco use and advised on the benefits of tobacco cessation.

In patients who continue smoking after diagnosis of cancer evidence-based tobacco cessation assistance should be integrated into multidisciplinary cancer care.
How such data is collected in NCI-Supported NCTN trials
Scope of the NCTN

- 2,000+ enrolling sites across North America (plus international sites)
- 190+ actively enrolling trials
How the NCTN Functions

- The NCTN is made up of 6 grant-funded clinical trials Groups, each of which develop and carry out clinical trials:
 - 4 US Adult Groups: Alliance, ECOG-ACRIN, NRG, and SWOG
 - 1 Pediatric Group: COG
 - 1 Canadian Collaborating Group

- Each NCTN group is a grantee of NCI
 - These are collaborative grants, so NCI is a partner in their work
 - However, each Group is independent and conducts itself differently, within the broad requirements of the network
Tobacco Assessment in the NCTN

- NCTN Groups have implemented tobacco utilization assessment in their clinical trials in their own ways
 - Smoking history is collected in all trials conducted by some Groups
 - Smoking history is focused on tobacco-related cancers or other selected trials in some Groups
 - Some Groups do not have a universal policy so it depends on scientific needs of the trial
- There is no universal policy across the NCTN
- Moving forward, tobacco utilization questions will conform with the FDA requirement to use CDASH questions
American Society of Clinical Oncology Policy Statement Update

September 2013

Recommendations

Include tobacco use status as a core data element in oncology clinical trials where appropriate.

ASCO supports including tobacco use history and status as core data elements that are collected throughout the course of a clinical trial in which concomitant medications are routinely captured: at diagnosis, trial registration, and follow-up and during long-term survival or at death. ASCO also recognizes the importance of maximizing clinical trial resources and encourages the inclusion of tobacco-related data as concomitant medications in a strategic and nonburdensome manner.
Smoking data is normally collected in the demographic information of most lung cancer trials.
Perspective

- Important to distinguish between goals for clinical practice and goals for clinical research
 - Assessments should not be added to trials unless they have clear clinical research goals and a strong research plan

- Tobacco utilization assessments in clinical trials should:
 - Have a strong scientific justification for inclusion in the particular trial
 - Add minimal burden to enrolling sites and patients
 - Conform with CDASH questions
 - Have a clear research plan, including hypotheses and an appropriately-powered statistical plan, with analyses conducted and published promptly
NCI Cancer Moonshot: Cancer Center Cessation Initiative

- Launched in 2017 with the long-term goal to help cancer centers build and implement sustainable tobacco cessation treatment programs
- Plans include refining electronic medical records and clinical workflows to ensure the systematic identification and documentation of smokers and the routine delivery of evidence-based tobacco cessation treatment services = component of “Standard of Care”.
- Overcome patient, clinician, clinic, and health system barriers to providing tobacco cessation treatment services
- Create mechanisms to sustain tobacco cessation treatment services so that they continue beyond the funding period of the initiative

Panel Discussion on Next steps should focus on

Basic tobacco history (smoker, ex-smokers etc.) is part of demographics

1) If additional data is appropriate, what is the appropriate setting for collecting such data?

Are clinical trials the ideal settings? (burden with experimental therapies, PRO’s etc.)
Could this data be better collected outside clinical trials in oncology settings? In conjunction with projects like Moonshot initiatives?

If there is a specific hypothesis-driven objective with statistical analysis plan in a particular therapeutic clinical trial, these can be discussed with the NCI
Thank You