Poster presentations will be available as part of the virtual meeting beginning at 9:30 a.m. ET on Wednesday, January 13

PR-01 Real-time, point-of-care pathology diagnosis via embedded deep learning. Bowen Chen, Harvard University, Cambridge, MA.

PR-02 Machine learning models to quantify lineage plasticity and neuroendocrine differentiation in high-grade prostate cancer. Beatrice Knudsen, University of Utah and ARUP laboratories, Salt Lake City, UT.

PR-03 Radiomics and Al-based treatment decision support for non-small cell lung cancer. Wei J. Mu, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL.

PR-04 Effect of breast cancer chemoprevention on a convolutional neural network-based mammographic evaluation using a mammographic dataset of women with atypical hyperplasia, lobular or ductal carcinoma in situ. Julia E. McGuinness, Columbia University Irving Medical Center, New York, NY.

PR-05 Leveraging graphs to do novel hypothesis and data-driven research using multiplex immunofluorescence images. Christopher Innocenti, Astrazeneca, Gaithersburg, MD.

PR-06 Utilizing biological domain knowledge and machine learning methods to improve cellular segmentation on multiplex fluorescence and imaging mass cytometry datasets improves the quality of single-cell data obtained. Trevor D. McKee, University Health Network, Toronto, ON, Canada.

PR-07 ORCESTRA: A platform for orchestrating and sharing high-throughput multimodal data analyses. Anthony Mammoliti, University Health Network, Toronto, ON, Canada.

PR-08 Accurate quantification of tumor DNA in liquid biopsies using deep learning. O. Alejandro Balbin, Novartis Institutes for Biomedical Research, Inc, Cambridge, MA.

PR-09 Genetic risk scores for breast cancer based on machine learning analysis of chromosomalscale length variation. James P. Brody, University of California, Irvine, CA.

PR-10Identifying new risk factors for early-onset CRC in population under 50 years old usingEHR-based machine learning.Taylor M. Parker, University of Florida, Gainesville, FL.

PR-11 Developing an agnostic risk prediction model for acute kidney injury in cancer patients using a machine learning algorithm from blood results data. Lauren Scanlon, The Christie NHS Foundation Trust, Manchester, United Kingdom.

PR-12Towards verifying results from biomedical deep learning models using the UMLS: Cases of
primary tumor site classification and cancer named entity recognition. Theodore Gaelejwe, IBM
Research, Johannesburg, South Africa.

American Association for Cancer Research Virtual Special Conference: ARTIFICIAL INTELLIGENCE, DIAGNOSIS, AND IMAGING | January 13-14, 2021

PO-001 Deep learning-based image analysis of the histological Glasgow Microenvironment Score in patients with colorectal cancer. Christopher J. Bigley, University of Glasgow, Glasgow, United Kingdom.

PO-002 Pan-cancer integrative histology-genomic analysis via interpretable multimodal deep learning. Richard J. Chen, Harvard Medical School, Boston, MA.

PO-003 Deep learning identifies conserved pan-cancer tumor features. Ali Foroughi pour, The Jackson Laboratory, Farmington, CT.

PO-004 A deep convolutional neural network for segmentation of whole-slide pathology images in glioblastoma. Guillermo A. Gomez, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia.

PO-005 An efficient digitized annotation platform for pathology-oriented dataset generation in AI research. Amoon Jamzad, Queen's University, Kingston, ON, Canada.

PO-006 Artificial intelligence aided interpretation of ALK fluorescent in situ hybridization for lung cancer: An algorithm development based on 10-year-annotated quality control files in central laboratory. Tae-Jung Kim, Department of Hospital Pathology, Seoul, Republic of Korea.

PO-007 Deep learning-based computational pathology predicts origins for cancers of unknown primary. Ming Yang Lu, Brigham and Women's Hospital, Boston, MA.

PO-008 Federated learning on whole slide images using weakly supervised computational pathology. Ming Yang Lu, Brigham and Women's Hospital, Boston, MA.

PO-009 Towards solving overlapping nuclei segmentation: Sequential CNNs for one to many mapping of pixels to objects. Calum E. MacAulay, BC Cancer, Vancouver, BC, Canada.

PO-010 Feature pyramid network for revealing tumour infiltrating lymphocyte presence and distribution in a whole slide image. Jonathan Mazurski, University of Toronto, Toronto, ON, Canada.

PO-012 AI and digital pathology based on nucleus morphology for diagnosis, prognosis, and morphological-gene isolation Li Fraumeni as a model. Ilan Tsarfaty, Tel Aviv University, Tel Aviv, Israel.

PO-014 Deep learning-based segmentation accurately captures histological features in cancer-free lymph nodes of breast cancer patients. Gregory Verghese, King's College London, London, United Kingdom.

PO-016 Seeing glycolysis on PDAC: Applying deep learning convolutional neural network model. Chang-Jiun Wu, MD Anderson Cancer Center, Houston, TX.

PO-017 Annotation-free 3D gland segmentation with generative image-sequence translation for prostate cancer risk assessment. Weisi Xie, University of Washington, Seattle, WA.

PO-018 Computational staining of tumor hypoxia from H&E images using convolutional neural networks. Mark Zaidi, University of Toronto, Toronto, ON, Canada.

PO-021 Humans cannot accurately detect mucinous colorectal carcinoma from CT images, can AI help?. Kinga Bernatowicz, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.

PO-022 Automated liver tissue segmentation in point of care ultrasound b-mode images using U-Net. Raul Blazquez Garcia, Oncoustics, Toronto, ON, Canada.

PO-023 Differentiation of tumefactive multiple sclerosis and glioblastoma using radiomics features extracted from magnetic resonance imaging and machine learning. Gian Marco Conte, Mayo Clinic, Rochester, MN.

PO-024 Boosting up knee bone tumor detection from radiology and magnetic resonance imaging by using deep learning techniques. Nhu-Tai Do, Chonnam National University, Gwangju, Republic of Korea.

PO-025 Differentiation of benign from clinically significant prostate cancer tissues using convolution neural networks on raw micro-ultrasound data. Ahmed El Kaffas, Stanford University, Stanford, CA.

PO-026 Convolutional neural network assessment of immune activation state of brain metastases. Mishka Gidwani, Massachusetts General Hospital, Boston, MA.

PO-027 Associations of radiomics features with tumor necrosis following chemotherapy and/or radiation therapy in patients with extremity soft tissue sarcoma. James Grosso, University of Miami, Miami, FL.

PO-029 Survival prediction of non-small cell lung cancer by deep learning model integrating clinical and positron emission tomography data. Sae-Ryung Kang, Chonnam National University Hwasun Hospital, Hwasun-gun, Republic of Korea.

PO-030 Radiomics for head and neck cancer prognostication: Results from the RADCURE machine learning challenge. Michal Kazmierski, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.

PO-031 Evaluating clinical utility of organs-at-risk segmentation In head and neck cancer by simple open-source 3D CNNs. Joseph Marsilla, University of Toronto, Toronto, ON, Canada.

PO-033 The impact of the variation of CT scanner on the prediction of HPV status in head&neck cancer patients. Reza Reiazi, Princess Margaret Cancer Centre, Toronto, ON, Canada.

PO-034The prediction of Mandibular osteoradionecrosis in head and neck cancer patients usingCT-derived radiomics features.Reza Reiazi, Radiation Medicine Program, Princess Margaret CancerCentre, University Health Network, Toronto, ON, Canada.

PO-035 Development of a robust radiomic biomarker of PDL1 expression and patient survival after first-line immunotherapy for Non-Small Cell Lung Cancer. Apurva Singh, University of Pennsylvania, Philadelphia, PA.

PO-036 A sophisticated bioinformatics framework for integrative study of radiomics and genomics profiles of tumors. Shrey S. Sukhadia, Queensland University of Technology, Brisbane, QLD, Australia.

American Association for Cancer Research Virtual Special Conference: ARTIFICIAL INTELLIGENCE, DIAGNOSIS, AND IMAGING | January 13-14, 2021

PO-038 Improving lung cancer survival analysis from CT images by Sliency Sampling. Hung Thanh Vo, Chonnam National University, Gwangju, Republic of Korea.

PO-039 Artificial intelligence-based extracapsular extension prediction in head and neck cancer analysis. Haifeng Wang, Mississippi State University, Mississippi State, MS.

PO-040 Retinal disease diagnosis through an adaptive deep learning model. Haifeng Wang, Mississippi State University, Mississippi State, MS.

PO-041 Shape features predicting intrahepatic progression-free and overall survival for SBRT treated HCC patients using radiomics and deep learning based survival models. Lise Wei, Radiation Oncology Department, University of Michigan, Ann Arbor, MI.

PO-042 Nanoparticles imaging for cancer metastasis diagnosis. Yulia Merkher, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russian Federation.

PO-043 Combining multiplexed immunohistochemistry and deep learning to spatially map the tumor microenvironment. Kouther Noureddine, BC Cancer Research Centre, Vancouver, BC, Canada.

PO-045Machine learning for predicting overall survival using whole exome DNA and geneexpression data and analyzing the significance of features.Dmitrii K. Chebanov, BioAlg Corp., Walnut, CA.

PO-046 MethylationToActivity: A deep-learning framework that reveals promoter activity landscapes from DNA methylomes in individual tumors. Xiang Chen, St. Jude Children's Research Hospital, Memphis, TN.

PO-048 Visual nucleotyping identifies chromatin phenotypes triggered by genome editing. Vivek Nandakumar, Altius Institute for Biomedical Sciences, Seattle, WA.

PO-049 Pseudo-alignment resolution in discriminating mouse reads. Soheil Jahangiri-Tazehkand, Princess Margaret Cancer Centre, Toronto, ON, Canada.

PO-050 Identifying de novo stage IV breast cancer (DNIV) cases in Electronic Health Records (EHR) using natural language processing. James Jakub, Mayo Clinic, Rochester, MN.

PO-051 Development of web-based quality-assurance tool for radiotherapy target delineation for head and neck cancer: Quality evaluation of nasopharyngeal carcinoma. Jun Kim, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.

PO-052 Exploring patient derived xenografts based pharmacogenomic data for precision oncology. Arvind Singh Mer, University Health Network, Toronto, ON, Canada.

PO-053 Machine learning CADx process for classification of lung nodules below the Lung-RADS 4A threshold in LDCT scans. Rohan Abraham, British Columbia Cancer Research Center, Vancouver, BC, Canada.

PO-054 Development of machine learning based early warning for rapid response system in a single cancer center. Bo-Gun Kho, Chonnam National University Medical School, Gwangju, Republic of Korea.

PO-056 Importance of artificial intelligence, machine learning deep learning in the field of medicine on the future role of the physician. Subash Kumar, Lochbridge, Elkridge, MD.

PO-058 Decoding tissue of origin patterns by tumor DNA and plasma tumor proteins. Mao Mao, Research & Development, SeekIn Inc, Shenzhen, China (Mainland).

PO-059 Recurrence predictive models for patients with hepatocellular carcinoma after radiofrequency ablation based on machine learning algorithms. Ja-Der Liang, National Taiwan University Hospital, Taipei, Taiwan (Greater China).

PO-060 Individualized prediction of meningioma recurrence risk over prolonged time periods. Yasin Mamatjan, Princess Margaret Cancer Centre, Toronto, ON, Canada.

PO-062 Fully automated artificial intelligence based breast cancer scanning through transilluminated image acquisition for mass screening appliances. Ponram P, Amrita College of Engineering and Technology, Nagercoil, India.

PO-064 Predicting tumor sensitivity to chemotherapeutic drugs using molecular, cellular and computational methods. N. Rajendra Prasad, Annamalai University, Kumbakonam, India.

PO-065 Artificial Intelligence to improve selection for NSCLC patients treated with immunotherapy. Arsela Prelaj, Fondazione IRCCS Istituto Nazionale TumoriFondazion, Milan, Italy.

PO-066 Data standardization, integration and meta-analysis of preclinical pharamcogenomics studies for gene expression biomarker discovery. Petr Smirnov, University of Toronto, Toronto, ON, Canada.

PO-067 Al and CT-radiomics as a tool for breast cancer prognosis and radiomics-gene isolation: Activated MET induced mammary carcinoma as a model. Ilan Tsarfaty, Tel Aviv University, Tel Aviv, Israel.

PO-068 Developing ovarian cancer sensors using molecular perceptron . Zvi Yaari, Memorial Sloan Kettering Cancer Center, New York, NY.

PO-069 A deep learning model assists urine cytology reporting with computational estimates of the nuclear/cytoplasmic ratios of the urothelial cells based on the Paris System. Wei-Lei Yang, AlxMed, Inc., Fremont, CA.

PO-070 Bimodality of gene expression in cancer patient tumors as interpretable biomarkers for drug sensitivity. Wail Ba-alawi, Princess Margaret Cancer Centre, Toronto, ON, Canada.

PO-071 Simulation of colorectal cancer clinical trials using real-world data and machine learning. Zhaoyi Chen, University of Florida, Gainesville, FL.

PO-072 Robust deployment of ML models quantifying the HE tumor microenvironment in NSCLC subjects from an AstraZeneca-sponsored phase II clinical trial. Laura Dillon, AstraZeneca, Gaithersburg, MD.

PO-073 Using machine learning to identify the risk factors of pancreatic cancer from the PLCO dataset. Sheema Khan, University of Memphis, Memphis, TN.

PO-074 The impact of phenotypic bias in the generalizability of deep learning models in non-small cell lung cancer. Aidan Gilson, Yale School of Medicine, New Haven, CT.

PO-075 Kinotype to phenotype: Perturbed phosphoproteomic state predicts cancer cell growth rates in vitro. Shawn M. Gomez, The University of North Carolina at Chapel Hill, Chapel Hill, NC.

PO-076 Unsupervised learning of image embeddings enables new opportunities to extract novel information from digital pathology HE images. Jason Hipp, AstraZeneca, Gaithersburg, MD.

PO-077 Image clustering of brain tumor patients using a deep neural network. Hadi Hosseini, St. Jude Children's Research Hospital, Memphis, TN.

PO-078 Exploring adversarial image attacks on deep learning models in oncology. Marina Joel, Yale University, New Haven, CT.

PO-079 Fused LASSO application for gastric cancer image segmentation. Jiwon Jung, Asan Medical Center, Seoul, Republic of Korea.

PO-080 Deep learning-based analysis of heterogeneity of breast cancer cells using lens-free digital in-line holography. Kwonmoo Lee, Boston Children's Hospital, Boston, MA.

PO-082 Automated tumor segmentation, grading, and analysis of tumor heterogeneity in preclinical models of lung adenocarcinoma. John H. Lockhart, Moffitt Cancer Center, Tampa, FL.

PO-083 Artificial intelligence based detection of breast cancer from transilluminated optical data. Ponram P, Amrita College of Engineering and Technology, Nagercoil, India.

PO-084 Automated detection of pancreatic ductal adenocarcinoma (PDAC) on CT scans using artificial intelligence (AI): Impact of inclusion of automated pancreas segmentation on the accuracy of **3D-convolutional neural network (CNN).** Anurima Patra, Mayo Clinic, Rochester, MN.

PO-086 Detection of cancer lesions in histopathological lung images using a sparse PCA network. Sundaresh Ram, University of Michigan, Ann Arbor, MI.

PO-089 Morphokinetic single-cell analysis and machine learning as a tool to characterize breast cancer cell motility and response to therapy. Ilan Tsarfaty, Tel Aviv University, Tel Aviv, Israel.

PO-090 Application of deep learning methods in predicting survival and identifying high-risk populations from large Optum real world breast cancer data. Han Wang, NC State, Raleigh, NC.

PO-091 Modeling the effects of glucose accessibility on tumor cell growth: A comparison of mechanism-based and machine learning models. Jianchen Yang, The University of Texas at Austin, Austin, TX.

PO-092 Developing a computable phenotype to identify populations eligible/ineligible for lung cancer screening. Shuang Yang, University of Florida, Gainesville, FL.

PO-093 Evaluating dependencies by rapid image-based ex vivo cancer biosensors. Mushriq Al-Jazrawe, Broad Institute of MIT and Harvard, Cambridge, MA. **PO-094** Socioeconomic status and utilization of cancer surgeries in the United States, Canada, and Australia. Hilary Pang, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

PO-095 The PROState AI Cancer–Decision Support (PROSAIC-DS) pilot study: Clinical decision support technology and its role in prostate cancer MDT meetings. Vishal Shiatis, King's College London, London, United Kingdom.