CLOSING PANEL DISCUSSION
Closing Remarks and Panel Discussion

Patricia Mucci LoRusso, DO, PhD (hc), FAACR
Optimizing the Dosage of Human Prescription Drugs and Biological Products for the Treatment of Oncologic Diseases

Guidance for Industry

Draft Guidance

U.S. Department of Health and Human Services
Food and Drug Administration
Oncology Center of Excellence (OCE)
Center for Drug Evaluation and Research (CDER)
Center for Biologics Evaluation and Research (CBER)
January 2023
Clinical/Medical
Consequences of Not Optimizing Dosage Before Approval

- Drug is poorly-tolerated at approved recommended dosage
 - Patients may stop taking a potentially effective drug
 - Patients choose to try a different drug

- Drug does not make it to market or must be withdrawn from the market

- Takes long time to evaluate alternative dosages following approval
 - Patients may not want to participate in trial if commercially available
 - Disease area moves on to other treatments

The Challenge: Identify the Best Tolerable Dose: The dose that is best tolerated without compromising efficacy
Dosage Optimization PMRs

- 24 PMRs issued for 21 new drugs (15% of 138 total approved new drugs)
- Took a median of 6.5 years to fulfill or release

Publication: Journal of Clinical Oncology Volume 41, Number 16_suppl https://doi.org/10.1200/JCO.2023.41.16_suppl.159
Novel Approaches:
 - Many examples and tools we saw over the past 1.5 days
 • Developed before Project Optimus
 - Many developed very creatively – “fit for purpose”
 - Question:
 • How do we create space for creativity in trial design while minimizing tension?
We Need to Go “Beyond the Box”

No need to think outside the box, simply realize there is no box.
One Size Does Not Always Fit All
New Paradigm Emphasizes Focusing on Dosage Optimization Prior to Approval

- ‘Optimized’ dosage in registration trial
 - Improves tolerability and adherence
 - Reduces dosage modifications (i.e., discontinuations)
 - And potentially increases likelihood of greater response to treatment
- Earlier understanding of dose- and exposure-response relationships may speed up novel therapy development
- More efficient to evaluate multiple dosages early in development
- Challenge:
 - Making sure we have the right dose for both safety AND efficacy
 - Difficult to conduct dosage optimization trials one a drug is approved
- **Consider all data**: pharmacokinetic (PK), pharmacodynamic (PD), activity/efficacy, safety, and tolerability data at each step

- **Evaluate safety information beyond DLTs**, e.g., low-grade symptomatic toxicities, dosage modification frequencies, patient-generated data for treatment-related symptoms

- **Identify a target dosage range early** and then further evaluate several dosages (ideally in a randomized trial)

- **Characterize dosage-** and exposure-response relationships for efficacy and toxicity
Are we trying to establish a primary development process for each agent?

I don’t think so
Multi-disciplinary Collaboration is Necessary

FDA-AACR Public Workshop On
OPTIMIZING DOSAGES FOR ONCOLOGY DRUG PRODUCTS: QUANTITATIVE APPROACHES TO SELECT DOSAGES FOR CLINICAL TRIALS
Model-Informed Drug Development

Development and application of exposure-based, biological, and statistical models derived from preclinical and clinical data sources to address drug development or regulatory issues*

QSAR: Quantitative structure–activity relationship
QSPR: Quantitative structure–property relationship

*Huang SM 2019 AAPS
Development and application of exposure-based, biological, and statistical models derived from preclinical and clinical data sources to address drug development or regulatory issues*

QSAR: Quantitative structure–activity relationship
QSPR: Quantitative structure–property relationship
Model-Informed Drug Development

Development and application of exposure-based, biological, and statistical models derived from preclinical and clinical data sources to address drug development or regulatory issues*

- QSAR: Quantitative structure–activity relationship
- QSPR: Quantitative structure–property relationship

QSAR: Quantitative structure–activity relationship
QSPR: Quantitative structure–property relationship
CLOSING REMARKS, LESSONS LEARNED AND NEXT STEPS

MODERATOR
Patricia M. LoRusso, DO, PhD (hc), FAACR
Yale Cancer Center

ADDITIONAL PANELISTS
Atiqr Rahman, PhD
U.S. Food and Drug Administration

Jin Y. Jin, PhD
Genentech

Geoff Oxnard, MD
Loxo@Lilly

Alex Phipps, PhD
AstraZeneca

Lillian Siu, MD
Princess Margaret Cancer Center

Julia Maues
Patient Centered Dosing Initiative
1. What aspects of dosage optimization did this workshop clarify for you?

2. How will pre-market dosage optimization impact the patient experience? How can this be most effectively communicated?

3. How do we start to implement what we learned? What resources do we need to get started?

4. What are key remaining challenges to dosage optimization that oncology stakeholders need to address?
CLOSING REMARKS, LESSONS LEARNED AND NEXT STEPS

MODERATOR
Patricia M. LoRusso, DO, PhD (hc), FAACR
Yale Cancer Center

ADDITIONAL PANELISTS
Atiqur Rahman, PhD
U.S. Food and Drug Administration

Jin Y. Jin, PhD
Genentech

Geoff Oxnard, MD
Loxo@Lilly

Alex Phipps, PhD
AstraZeneca

Lillian Siu, MD
Princess Margaret Cancer Center

Julia Maues
Patient Centered Dosing Initiative
THANK YOU TO OUR SUPPORTERS

AstraZeneca

Bristol Myers Squibb

GSK

LOXO @ Lilly